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IDENTIFYING STUDENT MISCONCEPTIONS AND HOW TO ALLEVIATE THEM IN  

THE COMMON CORE ENVIRONMENT 

JAY L. SCHIFFMAN 

Abstract: Mathematics educators are aware of misconceptions like the “freshman dream” 

when squaring a binomial   2 2 2 3 4 12 1 1 2 24 2
, 2 3 6 , ,

2 4 6 48 8
a b a b         or 

sin 2 2 sinx x    permeating at both the secondary and undergraduate levels to name just a 

few. This workshop will engage participants to alleviate such persistent difficulties via the 

use of manipulatives, technology and counterexamples to strengthen conceptual 

understanding.  
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SOME PROBLEMS AND DISCUSSION ACTIVITIES IN IDENTIFYING STUDENT 

 MISCONCEPTIONS AND HOW TO ALLEVIATE THEM IN THE COMMON CORE 

 ENVIRONMENT: 

I. Consider the ‘freshman dream” when squaring the binomial  
2 2 2.a b a b    Think of 

several avenues one can partake of to alleviate this dilemma. Your list should include area 

models, the binomial theorem, counterexamples and technology. Extend the problem to 

higher powers of .a b  

II. Correct the error in the following problem involving addition of fractions: 
1 1 2

.
2 4 6
 

Why does the original answer not make sense? Using cuisenaire rods and diagrams, obtain 

a correct solution which supports the standard algorithm. 

III. Correct the false statement 
24 2

.
48 8

  Give several examples where crossing out the 

middle two digits (the second digit in the numerator and the first digit in the denominator) 

actually yields the correct simplification, but for the wrong reason. We are looking for 

anomalies. What is the correct procedure for simplifying fractions such as those we are 

encountering using manipulatives and technology? 

IV. Correct the false statement 3 4 122 3 6 .   Why is there no gimmick or rule in this case? 

Discuss ideas including number sense in considering the relative size of the two sides of this 

“equation.” 

V. Many students erroneously believe that  sin 2 2 sin .x x    Correct this false statement 

and furnish several strategies one can use to demonstrate that the original statement is 

incorrect. Is there any time when the original statement is actually true?   

VI. Two students assert that the domain of the function   3f x x  is respectively given 

by    4,5,6,7,... 3,4,5,6,7,... .and  Explain how you would help these students to obtain a 

better foothold on the concept of domain. How would the answer change if one were 

speaking of the sequence ns  defined by 3.ns n   

VII. A student asserts that the following arrowed diagram represents a function from the 

set A  into the set B if the student constructs arrows as follows: 1 1 2 2 3 3, , .    
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1

1

2

2

3

3

4

:A F B

  

What is the student missing in his/her analysis? 

VIII. A teacher in algebra tells his students that the following property of radicals is always 

true: .a b a b   A student then notices the following demonstration in the textbook 

that shows 21 1: 1 1 1 1 1 1 1.i i i               The teacher is stunned! He/she 

has neglected to consider an exception. What is the exception? 

IX. Consider the following improper use of a well-known algebraic property involving 

quadratic equations: 

   

   

   

   

6 9 4

6 4 9 4

10 5

10 5

x x

x x

x x

x x

    

      

    

  

 

The student then checks the solutions: 

   

   

   

   

5 : 6 9 4

6 5 5 9 4

1 4 4

4 4

10 : 6 9 4

6 10 10 9 4

4 1 4

4 4

x x x

x x x

     

    

  

  

     

    

   

  

    

Both solutions check! Is this a shortcut to the traditional method? 

What is wrong with the method? 

Show that the method works on the following quadratic equations: 

       7 9 3 8 9 2.x x and x x           
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Are there any others in the family that work via this erroneous method? 

Solve each of these problems correctly. 

Reconcile the above situation with the quadratic equation  5 6.x x     

X. Consider the trigonometric equation 
2cos cos 0; 0 2 .         This trigonometric 

equation is of the second degree. Hence there can be no more than two roots. Is this 

correct? Explain.  

XI. Many students confuse number properties such as commutativity and associativity. On 

the set of real numbers, can one find a binary operation that is (a). commutative and 

associative; (b). neither commutative nor associative; (c). associative but not commutative; 

(d). commutative but not associative. Hence the properties of commutativity and 

associativity are logically independent in the sense that neither one implies the other. Try to 

furnish illustrations of the four possible cases. 

XII. A student remarked that he found a prime number generating formula in the sense 

that all the output values are prime numbers:    2 7 53; 0,1,2,3,4,5,... .p n n n n W     

By going far enough out in the sequence, prove him wrong! Here we must persevere in 

problem solving and use appropriate tools strategically.    
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SOLUTIONS TO SOME PROBLEMS AND DISCUSSION ACTIVITIES IN 

IDENTIFYING STUDENT MISCONCEPTIONS AND HOW TO ALLEVIATE THEM IN 

THE COMMON CORE ENVIRONMENT: 

I. The easiest way to show that  
2 2 2a b a b    is via a counterexample. Let 2 3.a and b 

Then    
2 2 2 2 2 2 22 3 5 25 2 3 4 9 13.a b and a b           Hence  

2 2 2.a b a b     

A second way of viewing this is via an area model in which one takes a rectangle of length 

a b and width .a b Subdivide the length of the rectangle a b into lengths a and b

respectively. The width of the rectangle a b can similarly be subdivided into lengths a and b

as well. This gives us four rectangles which partition the original square as seen below: 

 A  B  

A  A A  A B  

B  B A  B B  
 

The sums of the partial products (which represent the sums of the areas of the rectangles) is 

   
22 2 2 22 .A A A B B A B B A A A B A B B B A A B A B B A A B B A B                           

Note that 

         
2 22 3 2 3 2 3 2 2 3 3 2 3 2 2 2 3 3 2 3 3 4 6 6 9 25 5 .                        

Hence  
2 2 2 22 3 2 2 2 3 3 4 12 9 25 5 .           It is important to note that if 

0 0a or b  (or both), then  
2 2 2.a b a b   Using technology such as a calculator equipped 

with CAS (a Computer Algebra System), we view the following in FIGURES 1-2 using the 

Expand command: 

   
FIGURE 1     FIGURE 2 

Let us examine higher powers of .a b  A configuration known as Pascal’s Triangle aids in 

achieving our desired goal. Here are the first five rows of Pascal’s Triangle: 

 

 



7 
 

 

                                               1 

     1                  1   

                               1               2              1                 

                         1           3                  3           1           

                   1          4               6                4           1 

               1        5           10                10           5         1  

Based on the initial five rows of Pascal’s Triangle, the next five rows are displayed. Let us write 

Rows 0-10 as follows: 

1           

1 1          

1 2 1         

1 3 3 1        

1 4 6 4 1       

1 5 10 10 5 1      

1 6 15 20 15 6 1     

1 7 21 35 35 21 7 1    

1 8 28 56 70 56 28 8 1   

1 9 36 84 126 126 84 36 9 1  

1 10 45 120 120 252 210 120 45 10 1 

  

The binomial theorem asserts the following for whole numbers n  with Pascal’s Triangle 

furnishing the binomial coefficients: 

           0 1 1 2 2 3 3,0 ,1 ,2 ,3 ... , .
n n n n n n n na b C n a b C n a b C n a b C n a b C n n a b                   

Here  
 

!
, .

! !

n
C n k

k n k


 
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Thus we have the following results for the first eleven whole number ten powers of :a b  

 

 

 

 

 

 

 

 

0

1

2 2 2

3 3 2 2 3

4 4 3 2 2 3 4

5 5 4 3 2 2 3 4 5

6 6 5 4 2 3 3 2 4 5 6

7 7 6 5

1

2

3 3

4 6 4

5 10 10 5

6 15 20 15 6

7 21

a b

a b a b

a b a a b b

a b a a b a b b

a b a a b a b a b b

a b a a b a b a b a b b

a b a a b a b a b a b a b b

a b a a b a

 

  

     

        

           

              

                 

       

 

 

 

2 4 3 3 4 2 5 6 7

8 8 7 6 2 5 3 4 4 3 5 2 6 7 8

9 9 8 7 2 6 3 5 4 4 5 3 6 2 7 8 9

10 10

35 35 21 7

8 28 56 70 56 28 8

9 36 84 126 126 84 36 9

10

b a b a b a b a b b

a b a a b a b a b a b a b a b a b b

a b a a b a b a b a b a b a b a b a b b

a b a

            

                       

                          

   9 8 2 7 3 6 4 5 5 4 6 3 7 2 8 9 1045 120 210 252 210 120 45 10a b a b a b a b a b a b a b a b a b b                          

 

Technology can offer additional morsels. Let us secure the initial eleven whole number powers 

of a b with the aid of the TI-89 in FIGURES 3-8: 

 

  
FIGURE 3     FIGURE 4  
 

  
FIGURE 5     FIGURE 6  

 

  
FIGURE 7     FIGURE 8  
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Using the TI-89, one can also obtain the entries in any row of Pascal’s Triangle. See FIGURES 

9-10 for the set up and the entries in the first ten rows of the triangle in FIGURES 11-13. 

 

   
FIGURE 9      FIGURE 10 

 

    
FIGURE 11      FIGURE 12 

 

 
FIGURE 13       

 

II. We correct the error in the following problem involving addition of fractions: 
1 1 2

2 4 6
   and 

explain why the original answer is not meaningful and using cuisenaire rods and diagrams obtain 

a correct solution which supports the standard algorithm. 

The standard method to add the fractions 
1 1

2 4
and  is to secure a common denominator. The 

least common denominator in this case is 4. It is important for both the student and teacher to 

realize that finding the LCD for a set of fractions is considering the LCM (least Common 

Multiple) of the involved denominators of the fractions. Traditionally using the standard 

algorithm, one obtains 
1 1 1 2 1 1 2 1 2 1 2 1 3

.
2 4 2 2 4 2 2 4 4 4 4 4

 
         


 The computation 

demonstrates procedural fluency without necessarily an understanding of why 
1 1 3

.
2 4 4
   The 
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original answer given as 
2

6
 is untenable since the first addend 

1

2
 in the problem is already larger 

than the final sum 
2 1

.
6 3
 The idea of having good number sense is paramount to understanding 

the underpinnings of elementary mathematics.  

When using cuisenaire rods and other manipulatives such as fraction bars, one must be able to 

identify the unit in the problem. Cuisenaire rods are colored rods with each rod assigned a 

specific integer value between on and ten. For example, White = 1, Red = 2, Light Green = 3, 

Purple = 4, Yellow = 5, Dark Green = 6, Black = 7, Brown = 8, Blue = 9, Orange = 10. Hence 

we can use the Cuisenaire rods to discover equivalent fractions or to use strip or tape diagrams to 

perform operations with fractions.  

III. 
24 2 2 2 3 1

.
48 2 2 2 2 3 2

  
 

   
 When simplifying fractions, the idea is to divide both numerator and 

denominator by the greatest common divisor of both which is 24. There are many models one 

can use to secure the GCD (Greatest Common Divisor) for a set of two positive integers. One 

way to form a systematic list which enumerates the divisors of each integer, search for the 

common divisors and secure the largest of these. 

In our example, the divisors of 24 and 48 can be secured in the following table: 

Divisors of 24: 1, 2, 3, 4, 6, 8, 12, 24 

Divisors of 48: 1, 2, 3, 4, 6, 8, 12, 24, 48 

 

We next color the common divisors of 24 and 48 in Red and the Greatest of these common 

divisors (24) in Green as shown below: 

Divisors of 24: 1, 2, 3, 4, 6, 8, 12, 24 

Divisors of 48: 1, 2, 3, 4, 6, 8, 12, 24, 48 

 

Divisors of 24: 1, 2, 3, 4, 6, 8, 12, 24 

Divisors of 48: 1, 2, 3, 4, 6, 8, 12, 24, 48 

 

Other models one can consider are the intersection of sets method, the Euclidean algorithm and 

prime factorization. The graphing calculator can aid as well. See FIGURES 14-15: 
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FIGURE 14     FIGURE 15 

There are three anomalies where crossing out the middle two digits actually yields the correct 

answer: 
16 1 19 1 26 2

, .
64 4 95 5 65 5

and    Of course, these are the exceptions to the rule.   

In all the other possible combinations of fractions that can actually be simplified, this homemade 

rule does not work! 

IV. The equation 3 4 122 3 6   could not possibly be correct without even computing. The right 

hand side of the equation is vastly larger than the left hand side. Note that  
1212 12 126 2 3 2 3 .   

One has twelve factors of six which correlates to the product of twelve factors of two with 

twelve factors of three. The left hand side represents the product of three factors of two with four 

factors of three. In this problem, what is more important is the proper use of number sense rather 

than merely the correct answer. The correct answer can be secured via the calculator as in 

FIGURE 16 where we also compare the relative size of the two quantities 3 42 3  and 126 : 

 
FIGURE 16 

V. A substantial knowledge of the trigonometric functions is vital for all students pursuing stem 

careers. Unfortunately, this understanding is not always prevalent in calculus courses which feed 

on trigonometry. For example, many students erroneously believe that  sin 2 2 sin .x x    We 

correct this false statement and furnish several strategies one can use to demonstrate that the 

original statement is incorrect and discover that there again are anomalies when this original 

statement is actually true. Let us first note the use of the counterexample to falsify the equation. 

Consider .
4

x


  Then  
2

sin 2 sin 2 sin 1 2 2 2 sin 2 sin .
4 2 2 4

x x
     

              
   
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Another method of viewing this pitfall is to graph both functions with the aid of a graphing 

calculator handheld and view the graphs as well as a table as in FIGURES 17-28: 

  
FIGURE 17     FIGURE 18 

  
FIGURE 19     FIGURE 20 

  
FIGURE 21     FIGURE 22 

  
FIGURE 23     FIGURE 24 
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FIGURE 25     FIGURE 26 

  
FIGURE 27     FIGURE 28    

On the other hand, if x k    where ,k then it is indeed the case that  sin 2 2 sin .x x  

Note this holds since    sin 2 0 2 sin .k k        

Next we show that  sin 2 2 sin cos .x x x     Assuming that the sum formula for the sine 

function has been covered, namely 

     sin sin cos cos sin . , sin 2 sin

sin cos cos sin sin cos sin cos 2 sin cos .

x y x y x y If y x then x x x

x x x x x x x x x x

         

         
  

Using the calculator can lend credence that the identity might be true, but the above is a formal 

proof. See FIGURES 29-39: 

  
FIGURE 29     FIGURE 30 
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FIGURE 31     FIGURE 32 

  
FIGURE 33     FIGURE 34 

  
FIGURE 35     FIGURE 36 

  
FIGURE 37     FIGURE 38 

 
FIGURE 39  
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VI. Two students respectively assert that the domain of the function   3f x x  is 

   4,5,6,7,... 3,4,5,6,7,... .and  It is essential to explain how one can help these students obtain a 

better foothold on the concept of domain and further discuss how the answer would change if 

one were speaking of the sequence ns  defined by 3.ns n   The major difficulty I find is that 

the students are thinking in terms of the set of integers, a discrete set, in contrast to the 

continuous set of real numbers.  Consider the function   3.f x x    The Domain of 

   | 3 0 | 3 .f x x x x        We are asserting that the domain consists of all real 

numbers at least three. This includes all rational and irrational numbers such as 

1 10
3.3 3 , 10 3.16227766017, 3.5 23.

3 3
and   All of these real numbers with the exception 

of 10 are rational numbers. Let us form the graph as well as a table for the function in question 

as depicted in FIGURES 40-45: 

  
FIGURE 40     FIGURE 41 

  
FIGURE 42     FIGURE 43 

  
FIGURE 44     FIGURE 45 
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FIGURE 46     FIGURE 47 

From the above analysis, it is clear that the domain contains more than integers that exceed 3. In 

fact, let us obtain a value when 3 2.x    See FIGURES 48-49: 

  
FIGURE 48     FIGURE 49 

For the sequence 3,ns n   we consider only positive integer inputs. By definition, a sequence 

is a function whose domain is the set of positive integers. See FIGURES 50-54. Make sure the 

MODE is SEQUENCE, not FUNCTION. 

  
FIGURE 50     FIGURE 51 

  
FIGURE 52     FIGURE 53 
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FIGURE 54 

Note that in sequence graphing, the points are discrete or isolated (separated) in contrast to 

function graphing where all the points are connected. 

VII. A student asserts that the following arrowed diagram represents a function from the set A  

into the set B if the student constructs arrows as follows: 1 1 2 2 3 3, , .    

 

1

1

2

2

3

3

4

:A F B

  

The student is missing the fact that in order for an arrowed diagram model to constitute a 

function, each element in the domain A  must map to one and only one element in the codomain 

.B This is not the case since the element 4 A  does not map to any element in .B     

VIII. A teacher in algebra tells his students that the following property of radicals is always true: 

.a b a b   A student then notices the following demonstration in the textbook that shows 

21 1: 1 1 1 1 1 1 1.i i i               The teacher is stunned! He/she has neglected 

to consider an exception. The problem lies in the step 

    21 1 1 1 1 1 1.while i i i             The rule that 

   

     

       

1
2 1 .

2

1 1
2 1 1 1

2 2

2 1 1 2
2 1 .

2 2

x
f x x and g x

x x
f g x f g x f x x and

x x
g f x g f x g x x


   

    
           

   

    
       

 

 

a b a b    works if at least one of the factors is non-negative which is not the case; for 

both factors are equal to -1. This is the exception to this property of radicals. 
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IX. Consider the following improper use of a well-known algebraic property involving quadratic 

equations: 

   

   

   

   

6 9 4

6 4 9 4

10 5

10 5

x x

x x

x x

x x

    

      

    

  

 

The student then checks the solutions: 

   

   

   

   

5 : 6 9 4

6 5 5 9 4

1 4 4

4 4

10 : 6 9 4

6 10 10 9 4

4 1 4

4 4

x x x

x x x

     

    

  

  

     

    

   

  

    

Both solutions check! Is this a shortcut to the traditional method? 

What is wrong with the method? 

Show that the method works on the following quadratic equations: 

       7 9 3 8 9 2.x x and x x           

Are there any others in the family that work via this erroneous method? 

Solve each of these problems correctly. 

Reconcile the above situation with the quadratic equation  5 6.x x     

One here is applying the zero factors property incorrectly. It is indeed the case that if 

   , . . 0, 0 0 .If a b s t a b then a b      This is easily proven. For suppose that 

0 0.a b but a   We show 0.b   

 
1 1 1 1

0 . 0 1 0.a exists a b a b b b b
a a a a

 
              

 
 If one applies this false narrative 

to these problems where the right hand side is not zero, the gimmick actually works. We consider 

       7 9 3 8 9 2.x x and x x           Observe the following: 
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   

   

   

   

7 9 3

7 3 9 3

10 6

10 6

x x

x x

x x

x x

    

      

    

  

 

The check is provided below: 

   

   

   

   

6 : 7 9 3

7 6 6 9 3

1 3 3

3 3

10 : 7 9 3

7 10 10 9 3

3 1 3

3 3

x x x

x x x

     

    

  

  

     

    

   

  

 

   

   

   

   

8 9 2

8 2 9 2

10 7

10 7

x x

x x

x x

x x

    

      

    

  

 

The check is provided here: 

   

   

   

   

7 : 8 9 2

8 7 7 9 2

1 2 2

2 2

10 : 8 9 2

8 10 10 9 2

2 1 2

2 2

x x x

x x x

     

    

  

  

     

    

   

  

 

It is amazing that this gimmick actually works for the family    9 10, .k x x k k       

To see this, note that   
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   

   

   

   

9 10

10 9 10

10 10 9

10 1

k x x k

k x k x k

x x k

x x k

    

      

      

   

  

The check is furnished below:     

   

    

   

 

   

   

 

1: 9 10

1 1 9 10

1 10 10

1 10 10

10 10

10 : 9 10

10 10 9 10

10 1 10

10 10

x k k x x k

k k k k

k k k k

k k

k k

x k x x k

k k

k k

k k

      

      

     

   

  

     

    

   

  

 

On the other hand, this gimmick does not work on the equation  5 6;x x   for 

       6 5 6 6 1 .x x x x            

Check:  

 

 

 

 

6 : 5 6

6 6 5 6

6 11 6

66 6 ( !)

1: 5 6

1 1 5 6

1 6 6

6 6 ( !)

x x x

False

x x x

False

     

     

   

 

     

     

   

 

 

The correct method for solving this problem is as follows: 

             25 6 5 6 0 2 3 0 2 0 3 0 2 3 .x x x x x x x x x x                         

To solve the problems        7 9 3 8 9 2x x and x x          correctly, we of course, 

proceed as follows: 
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               

               

2 2

2 2

7 9 3 16 63 0 16 63 0 7 9 0 7 0 9 0 7 9 .

8 9 2 17 72 0 17 72 0 8 9 0 8 0 9 0 8 9 .

x x x x x x x x x x x x

x x x x x x x x x x x x

                              

                              

 

In order to correctly solve the family of equations of the form    9 10, ,k x x k k     

proceed as follows either by factoring or via the quadratic formula: 

By factoring, we obtain 

   

       

            

2 2

2 2 2

9 10 9 9 10 9 9 10

9 9 10 9 9 10 0 9 10 10 0

10 1 0 10 0 1 0 10 1 .

k x x k x k x x k k x k x x k k

x k x k k x k x k k x k x k

x x k x x k x x k

                        

                        

                

 

If we employ the quadratic formula, we obtain from the quadratic equation 

   2 9 10 10 0,x k x k        

             

           

         

2 2 2

22 2

2 2

9 9 4 1 10 10 9 1 9 4 10 10

2 1 2

9 18 81 40 40 9 22 121 9 11

2 2 2

9 11 9 11 9 119 11

2 2 2 2

2 2 9

2

k k k k k k
x

k k k k k k k k k

k k k k k kk k

k k

                         
  



               
  

                              
   

    
 

 

 
 

2 111 20
1 10.

2 2 2

kk
k

  
     

 

 

X. Consider the trigonometric equation 
2cos cos 0; 0 2 .         This trigonometric 

equation is of the second degree. Hence one might erroneously believe based on the study of 

polynomial theory that there can be no more than two roots. Is this correct? Explain. The 

conjecture is incorrect and is based on the theory of polynomial equations where any polynomial 

equation of degree two must have exactly two roots (not necessarily real and not necessarily 

distinct) by the n zeros theorem. Actually this trigonometric equation possesses THREE roots in 

the indicated interval. One can obtain this via multiple perspectives. Let us initially furnish an 

algebraic solution: 

     

       

2cos cos 0 cos cos 1 0 cos 0 cos 1 0

3
cos 0 cos 1 0 0,2 .

2 2

     

 
     

           

     
              

    

 



22 
 

A second method would be to graph the equations in TRIG MODE and use a graphing utility 

plus a TABLE FEATURE as well as the Solve Command. Please see FIGURES 55-66: 

  
FIGURE 55     FIGURE 56 

  
FIGURE 57     FIGURE 58 

   
FIGURE 59     FIGURE 60 

  
FIGURE 61     FIGURE 62 
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FIGURE 63     FIGURE 64       

  
FIGURE 65     FIGURE 66 

XI. Many students confuse number properties such as the commutative and associative 

properties. On the set of real numbers, can one find a binary operation that is: (a). commutative 

and associative; (b). not commutative and not associative; (c). associative but not commutative; 

(d). commutative but not associative. Hence the properties of commutativity and associativity are 

logically independent in the sense that neither one implies the other. Here are some examples: 

(a). The binary operations of addition and multiplication on the set of integers is both 

commutative and associative. A more esoteric binary operation which is both commutative and 

associative is as follows: Let ,a b  such that .a b a b a b     To verify this, note that 

.b a b a b a     Since ,a b which commute under ordinary addition and multiplication, the 

result is verified yielding .a b b a   To show that   is associative requires a bit more 

verification. Let , , .a b c Then 

       

     

.

.

a b c a b a b c a b a b c a b a b c a b a b c a c b c a b c

a b c a b c b c a b c b c a b c b c a b a c a b c

                            

                       
 

Since addition is commutative and associative in , upon comparing final entries in the two 

calculations, we can conclude that    .a b c a b c       

(b). The binary operations of subtraction and division in the set of ordinary integers are neither 

commutative nor associative and a counterexample suffices for each. Let 

20, 10 2.a b and c    Then 20 10 10 10 10 20 .a b b a          (Subtraction is not 

commutative).        20 10 2 10 2 8 12 20 8 20 10 2 .a b c a b c                  

(Subtraction is not associative). 
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1
20 10 2 10 20 .

2
a b b a          (Division is not commutative). 

       20 10 2 2 2 1 4 20 5 20 10 2 .a b c a b c                 (Division is not 

associative). 

A more interesting example is that of exponentiation. We note that in the set of integers, this 

operation is neither commutative nor associative: 

Let 2, 3 4.a b and c   Then 3 22 9 9 3 .b aa b     (Exponentiation is not commutative). 

Is there one non-trivial case where ?b aa b YES! Let 4 2.a and b  Then 

2 44 16 2 .b aa b     

       44 33 3 4 12 812 2 2 4096 2417851639229258349412352 2 2 .
cc bba a       

(Exponentiation is not associative). 

(c). The operation which denotes function composition is associative, but not commutative. 

To see that the composition of functions is not necessarily commutative, let f and g be functions 

defined as follows:    2 1.f x x and g x x   Then 

       

         

2 2

2 2

1 .

1 1 2 1 .

g f x g f x g x x x Domain of f

f g x f g x f x x x x x Domain of g

      

           
 

The calculator can form the composition of two functions. See FIGURES 67-71: 

  
FIGURE 67     FIGURE 68 
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FIGURE 69     FIGURE 70 

 
FIGURE 71  

A numerical example now shows that these functions are different; for in most cases, different 

outputs will result from the same input. For example, let 5.x  Then 

                   2 25 5 5 25 25 1 26 36 6 6 5 1 5 5 .g f g f g g f f f g f g              

Note that if f and g are a pair of inverse functions, then the functions commute. To cite an 

example, let    
1

2 1 .
2

x
f x x and g x


     Then 

     

       

1 1
2 1 1 1

2 2

2 1 1 2
2 1 .

2 2

x x
f g x f g x f x x and

x x
g f x g f x g x x

    
           

   

    
       

 

 

(d). The following binary operation  on is commutative, but not associative: 

Let  be defined as follows: If 
2 2, , .a b then a b a b     Note that 

2 2 2 2 .a b a b b a b a       Since 
2 2 2 2 2 2 2 2, , .a b a b a b a b b a           

This establishes that   is commutative. In contrast,   is not associative. To see this, let 

3, 4 5.a b and c    Then 

       

       

2 2 2 2

2 2 2 2

3 4 5 3 4 5 9 16 5 25 5 25 5 625 25 650

1690 9 1681 3 41 3 41 3 16 25 3 4 5 3 4 5 .

a b c

a b c

                  

                 
 

XII. A student remarked that he found a prime number generating formula in the sense that all 

the output values are prime numbers:    2 7 53; 0,1,2,3,4,5,... .p n n n n W      By going 
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far enough out in the sequence, prove him wrong! Here we must persevere in problem solving 

and use appropriate tools strategically. 

In order to achieve our goal, we use a hand-held graphing calculator and consider the following 

inputs and outputs in FIGURES 72-80: 

  
FIGURE 72     FIGURE 73  

  
FIGURE 74     FIGURE 75 

  
FIGURE 76     FIGURE 77 

  
FIGURE 78     FIGURE 79 
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FIGURE 80 

THANK YOU FOR YOUR PARTICIPATION AT THIS WORKSHOP DURING THE 

THE 7
TH

 ANNUAL KCM CONFERENCE ENGAGE 2015 IN LEXINGTON, KY! 

      


