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IDENTIFYING STUDENT MISCONCEPTIONS AND HOW TO ALLEVIATE THEM IN
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Abstract: Mathematics educators are aware of misconceptions like the “freshman dream”
when squaring a binomial ((a+b)2 =a’ +b2), 2 .3tog2 1,12 24 2

2 4 6 48 8
sin2-x=2-sin X permeating at both the secondary and undergraduate levels to name just a
few. This workshop will engage participants to alleviate such persistent difficulties via the
use of manipulatives, technology and counterexamples to strengthen conceptual

understanding.



SOME PROBLEMS AND DISCUSSION ACTIVITIES IN IDENTIFYING STUDENT

MISCONCEPTIONS AND HOW TO ALLEVIATE THEM IN THE COMMON CORE

ENVIRONMENT:

L. Consider the ‘freshman dream” when squaring the binomial (a+ b)2 =a’ +b® Think of

several avenues one can partake of to alleviate this dilemma. Your list should include area
models, the binomial theorem, counterexamples and technology. Extend the problem to
higher powers of a+b.

I1. Correct the error in the following problem involving addition of fractions: %+% = E

6
Why does the original answer not make sense? Using cuisenaire rods and diagrams, obtain
a correct solution which supports the standard algorithm.

24 2 . .
I11. Correct the false statement TS Give several examples where crossing out the

middle two digits (the second digit in the numerator and the first digit in the denominator)
actually yields the correct simplification, but for the wrong reason. We are looking for
anomalies. What is the correct procedure for simplifying fractions such as those we are
encountering using manipulatives and technology?

IV. Correct the false statement 2°-3" = 6%, Why is there no gimmick or rule in this case?
Discuss ideas including number sense in considering the relative size of the two sides of this
“equation.”

V. Many students erroneously believe that sin(2-x) =2-sinx. Correct this false statement

and furnish several strategies one can use to demonstrate that the original statement is
incorrect. Is there any time when the original statement is actually true?

V1. Two students assert that the domain of the function f (x) =x—3is respectively given

by {4,5,6,7,...} and {3,4,5,6,7,...}. Explain how you would help these students to obtain a
better foothold on the concept of domain. How would the answer change if one were
speaking of the sequence s, defined by s =+/n—-3.

VII. A student asserts that the following arrowed diagram represents a function from the
set A into the set B if the student constructs arrows as follows: o, =g, o, =0, oy =,



What is the student missing in his/her analysis?

VI11. A teacher in algebra tells his students that the following property of radicals is always
true: va-b =+/a-+b. A student then notices the following demonstration in the textbook

that shows —1=1: -1=i% =i-i =+-1-v=1=+~1.--1 =1 =1. The teacher is stunned! He/she
has neglected to consider an exception. What is the exception?

IX. Consider the following improper use of a well-known algebraic property involving
guadratic equations:

x=5: (6-x)-(x-9)=—4
(6-5)-(5-9)=—4

1.-4 =4

—4 =4

x=10: (6—x)-(x—9)=—4
(6-10)-(10-9)=—4
-4.1 =-4
4 =_4
Both solutions check! Is this a shortcut to the traditional method?

What is wrong with the method?
Show that the method works on the following quadratic equations:

(7-x)-(x—9)=—-3and (8—x)-(x—-9)=-2.



Are there any others in the family that work via this erroneous method?

Solve each of these problems correctly.

Reconcile the above situation with the quadratic equation x-(x—5) =—6.

X. Consider the trigonometric equation cos?@—coséd =0; 0< 8 < 2-z. This trigonometric

equation is of the second degree. Hence there can be no more than two roots. Is this
correct? Explain.

XI. Many students confuse number properties such as commutativity and associativity. On
the set of real numbers, can one find a binary operation that is (a). commutative and
associative; (b). neither commutative nor associative; (c). associative but not commutative;
(d). commutative but not associative. Hence the properties of commutativity and
associativity are logically independent in the sense that neither one implies the other. Try to
furnish illustrations of the four possible cases.

XII. A student remarked that he found a prime number generating formula in the sense
that all the output values are prime numbers: p(n)=n*-7-n+53, neW ={0,1,2,34,5,...}.

By going far enough out in the sequence, prove him wrong! Here we must persevere in
problem solving and use appropriate tools strategically.



SOLUTIONS TO SOME PROBLEMS AND DISCUSSION ACTIVITIES IN
IDENTIFYING STUDENT MISCONCEPTIONS AND HOW TO ALLEVIATE THEM IN
THE COMMON CORE ENVIRONMENT:

I. The easiest way to show that (a+b)2 = a”+b’ is via a counterexample. Let a=2 and b=3.

Then (a+b)’ =(2+3)° =5 =25 and a® +b? = 2% +3 =4+9=13. Hence (a+b)’ #a’+b>

A second way of viewing this is via an area model in which one takes a rectangle of length
a+b and width a+b. Subdivide the length of the rectangle a+b into lengths a and b

respectively. The width of the rectangle a+b can similarly be subdivided into lengths a and b
as well. This gives us four rectangles which partition the original square as seen below:

A B
A Ax A AxB
B BxA BxB

The sums of the partial products (which represent the sums of the areas of the rectangles) is
A*A+A*B+B*A+B*B=A*A+A*B+A*B+B*B=A2+(A*B+A*B)+82:A2+2*A*B+BZ:(A+B)2.
Note that

(2+3)2 =(2+3)-(2+3)=2-(2+3)+3:(2+3)=2-2+2-3+3:2+3-3=4+6+6+9=25=5"
Hence (2+3)2 =2°+2-2-3+3 =4+12+9=25="5% It is important to note that if

a=0or b=0 (or both), then (a+b)2 =a’ +b?. Using technology such as a calculator equipped

with CAS (a Computer Algebra System), we view the following in FIGURES 1-2 using the
Expand command:
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Let us examine higher powers of a+b. A configuration known as Pascal’s Triangle aids in
achieving our desired goal. Here are the first five rows of Pascal’s Triangle:



1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

Based on the initial five rows of Pascal’s Triangle, the next five rows are displayed. Let us write
Rows 0-10 as follows:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1
1 10 45 120 120 252 210 120 45 10 1

The binomial theorem asserts the following for whole numbers n with Pascal’s Triangle
furnishing the binomial coefficients:

(a+b)"=C(n,0)-a"-b°+C(n,1)-a"*-b* +C(n,2)-a"*-b*+C(n,3)-a"*-b*+...+C(n,n)-a""-b".
n!
kt(n—k)v

Here C(n,k)



Thus we have the following results for the first eleven whole number ten powers of a+b:

=a’+2-a-b+b?
=a*+3-a’>-b+3-a-b*+b?

+4-a%-b+6-a>-b*+4-a-b*+b*

Technology can offer additional morsels. Let us secure the initial eleven whole number powers

(a+b)
(a+b)
(a+b)
(a+b)
(a+b)
(a+b)’ =a’+5-a*-b+10-a°-b*+10-a*-b*+5-a-b* +b°
(a+b)
(a+b)
(a+b)
(a+b)
(a+b)

+6-a°-b+15-a*-b*+20-a°-b*+15-a*-b* +6-a-b° +b°
+7-a%-b+21-2°-b®+35-a"-b*+35-a°-b*+21-a*-b* +7-a-b® +0’
+8-a"-b+28-a°-b*+56-a°-b*+70-a*-b*+56-a>-b°+28-a%-b* +8-a-b” +b°
=a’+9-a®>-b+36-a’-b*+84-a°-b*+126-a°-b* +126-a*-b°>+84-a-b° +36-a”-b’ +9-a-b® + b’
=a®+10-a°-b+45-a°-b*+120-a’ -b*+210-a°-b* + 252-a°-b° +210-a* -b® +120-a°-b" + 45-a®-b® +10-a-b° + b*°

of a+b with the aid of the T1-89 in FIGURES 3-8:

T [l aibra|cate [t her [PramI0|c1em Us| |
L] expahd[(a + bjﬂ] 1
= expand[[a +h) 1]
L] Expand[(a + bjz]

( ]

® zxpandl[a + bjE

a+h

aZ+2 ab+b?

22 +3 a2 b+3-ab+p”

expand{{ath>*3>

HMAIN EAD AUTO FUMC 4,09

FIGURE 3
- {— Fllgebr*a Ealc, Dther*TPr‘ngDTClean Upﬁ

m excpandl(a + b1

a%+6 a7 b+15 a2t b2 20 82° BT+ 15 2
L] expand[(a + bjE]

44 b2+ 2025 bR+ 1522 b+ 6-a b7 + B
L] expand[(a + bj?]

2" +7 2% b+21- a7 b2 +35 2t b+ 3520

expand?{{athyx*?)

HMAIN EAD AUTO FUMC /00

FIGURE 5
T [l aibra|cate [t her [PramI0|c1em Us| |

m excpandlia + b1 )

2 +9. 2% b+36- a7 b2 4% BT+ 126
L] expand[(a + bjg]

126327 b+ 126 2% BT + 8425 b5 + 360
L] expand[(a + bjg]

44 b5+ 5425 b5 +36-a2 b +9-abF+ b7

expand{{ath>*?)

HMAIN EAD AUTO FUMC /00

FIGURE 7

Fllgebr*a Ealc, Dther*TPr‘ngDTClean Upﬁ

L] expand[(a +hb17]
at+q a7 b+e-aZ b?+4.a b7 +p?
L] expand[(a + bjS]
22 +5 a2t b+10 2% b2 +10-22 BE 45 a-th
L] expand[(a + bjs]
4t b+r1o-a b2 +10-22 b3 +5 a2 bt + 07

expand{tath>*L)

HMAIN EAD AUTO FUMC /00

FIGURE 4
- {— Fllgebr*a Ealc, Dther*TPr‘ngDTClean Upﬁ

L] expand[(a +hb1"]

44 b3 +35 25 bt +21- a2 b7+ 7 abS 40T
L] expand[(a + bjs]

2%+5 a7 b+23 2% b2 567 BT+ 702
L] expand[(a + bjs]

4% bt 5625 BT +25-22 b5+ a b’ + b7

expandttath>*8)

HMAIN EAD AUTO FUMC /00

FIGURE 6
Fllgebr*a Ealc, Dther*TPr‘ngDTClean Upﬁ

L] expand[(a + b
al% 41957 b+45 2% b2+ 12082 BT+ 2p
L] expand[(a + b lEl]
4+ 21025 Y+ 25227 b+ 210 2% BE 4 1P
L] expand[(a + b lEl]
4541202 b7 +45 22 b¥+ 108 b7 +p 10

expand{tath>*10>

HMAIN EAD AUTO FUMC /00

FIGURE 8




Using the TI-89, one can also obtain the entries in any row of Pascal’s Triangle. See FIGURES
9-10 for the set up and the entries in the first ten rows of the triangle in FIGURES 11-13.
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I1. We correct the error in the following problem involving addition of fractions: %+% :g and
explain why the original answer is not meaningful and using cuisenaire rods and diagrams obtain
a correct solution which supports the standard algorithm.

The standard method to add the fractions % and % is to secure a common denominator. The

least common denominator in this case is 4. It is important for both the student and teacher to

realize that finding the LCD for a set of fractions is considering the LCM (least Common

Multiple) of the involved denominators of the fractions. Traditionally using the standard
121121212+13

algorithm, one obtains 1+1=— —t =4 . The computation
2 22 4 2.2 4 4 4 4 4

1
demonstrates procedural fluency without necessarily an understanding of why E



original answer given as % Is untenable since the first addend % in the problem is already larger

than the final sum §= % The idea of having good number sense is paramount to understanding
the underpinnings of elementary mathematics.

When using cuisenaire rods and other manipulatives such as fraction bars, one must be able to
identify the unit in the problem. Cuisenaire rods are colored rods with each rod assigned a
specific integer value between on and ten. For example, White = 1, Red = 2, Light Green = 3,
Purple = 4, Yellow = 5, Dark Green = 6, Black = 7, Brown = 8, Blue = 9, Orange = 10. Hence
we can use the Cuisenaire rods to discover equivalent fractions or to use strip or tape diagrams to
perform operations with fractions.
Il. 24 = _2:2:2:3 = 1. When simplifying fractions, the idea is to divide both numerator and
48 2.2.2-2.3 2
denominator by the greatest common divisor of both which is 24. There are many models one
can use to secure the GCD (Greatest Common Divisor) for a set of two positive integers. One
way to form a systematic list which enumerates the divisors of each integer, search for the
common divisors and secure the largest of these.

In our example, the divisors of 24 and 48 can be secured in the following table:

Divisorsof 24: 1, 2, 3,4, 6, 8
Divisors 0of 48: 1, 2, 3, 4, 6, 8,

We next color the common divisors of 24 and 48 in Red and the Greatest of these common
divisors (24) in Green as shown below:

Divisorsof 24: 1, 2, 3,4, 6, 8,12, 24
Divisors 0of 48: 1, 2, 3,4, 6, 8, 12, 24, 48

Divisorsof 24: 1, 2, 3,4, 6, 8
Divisors of 48: 1, 2, 3, 4, 6, 8,

Other models one can consider are the intersection of sets method, the Euclidean algorithm and
prime factorization. The graphing calculator can aid as well. See FIGURES 14-15:

10
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There are three anomalies where crossing out the middle two digits actually yields the correct
answer: 16 = 1, 19 = 1 and 26 = Z Of course, these are the exceptions to the rule.

64 4 95 5 65
In all the other possible combinations of fractions that can actually be simplified, this homemade

rule does not work!

IV. The equation 2°-3* =6 could not possibly be correct without even computing. The right
hand side of the equation is vastly larger than the left hand side. Note that 6" = (2-3)12 =2%.3%
One has twelve factors of six which correlates to the product of twelve factors of two with
twelve factors of three. The left hand side represents the product of three factors of two with four

factors of three. In this problem, what is more important is the proper use of number sense rather
than merely the correct answer. The correct answer can be secured via the calculator as in

FIGURE 16 where we also compare the relative size of the two quantities 2°-3* and 6":
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V. A substantial knowledge of the trigonometric functions is vital for all students pursuing stem
careers. Unfortunately, this understanding is not always prevalent in calculus courses which feed

on trigonometry. For example, many students erroneously believe that sin (2- x) =2-sinx. We
correct this false statement and furnish several strategies one can use to demonstrate that the

original statement is incorrect and discover that there again are anomalies when this original
statement is actually true. Let us first note the use of the counterexample to falsify the equation.

2

Consider x=2. Then sin(2-x):sin 2.% | —sin| & :1¢«/§:2-—:2-sinz:2-sinx.
4 4 2 2 4

11



Another method of viewing this pitfall is to graph both functions with the aid of a graphing
calculator handheld and view the graphs as well as a table as in FIGURES 17-28:
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On the other hand, if x=Kk-z where k € Z,then it is indeed the case that sin(2~ x) =2-sinXx.
Note this holds since sin(2-k-7)=0=2-sin(k- ).

Next we show that sin(2- x) =2-sinX-cos x. Assuming that the sum formula for the sine
function has been covered, namely

sin(x+y)=sinx-cosy+cosx-siny. If y=x, then sin(2-x)=sin(x+x)=

Sin X-COS X+ COS X -Sin X =Sin X-C0S X + Sin X-COS X = 2-SiNn X - COS X.

Using the calculator can lend credence that the identity might be true, but the above is a formal
proof. See FIGURES 29-39:
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V1. Two students respectively assert that the domain of the function f (x) =Jx-3is

{4,5,6,7,...} and {3,4,5,6,7,...}. Itis essential to explain how one can help these students obtain a
better foothold on the concept of domain and further discuss how the answer would change if
one were speaking of the sequence s, defined by s, =n-3. The major difficulty I find is that
the students are thinking in terms of the set of integers, a discrete set, in contrast to the
continuous set of real numbers. Consider the function f (x)=+/x—3. The Domain of

f ={xeR|x-3>0} ={xeR|x>3}. We are asserting that the domain consists of all real

numbers at least three. This includes all rational and irrational numbers such as

3.3= 3% = % J10 ~3.16227766017, 3.5 and 23. All of these real numbers with the exception

of /10 are rational numbers. Let us form the graph as well as a table for the function in question
as depicted in FIGURES 40-45:

Fev W (FEw|_ FET i Fev
v{— Zu:u:umEdlt <ALl |Stulels s T ] v{— Zoarm ]
FLOTE wr i
w1 = ®MaR=
2= wscl=1,
y3= umin=-10.
gd= umax=10.
y5= uscl=].
yE= FERC-sH LN
ur=
ug=
Q9=
yli=
vl Cxd=JCx—3>
MAIN EAD AUTO FUNC ERTT MAIN FAD AOTO FUNC ERTT
FIGURE 40 FIGURE 41
1 Few |_ F¥ i W B
- E Zoom|Trace Regr*aph Math|Oraw|~ fp
1 I THBLE SETUF ‘\.
thlstart . coeans
athlieeeeennnnn | S
¢,-—~——~_—_ Graph <-» Table OFF+
Independent.. ... AUTO+
Ent.er=5SALE ESC=CAHCEL
wCE, g i,
TAIN FAD AOTO FUNC EATT TYFE + [ENTERI=OF, AND [ESCI=CAMLEL
FIGURE 42 FIGURE 43
1 B T B H - B H i
i g e [ s |ieer P SEtuP : E s T é-‘-:=a-=TE pep e
3 gl ul
undef undet
4.5 uridef .9 undef
4. unide G, unidet
c3.9 unidef S uridet
-3, undef . undet
2.5 uridef =] undef
2. unide 2. unidet
1.5 undet 2.9 undet
x="5. x="1.
AN FAD AOTO FUNC ERTT AN FAD AOTO FUNC ERTT
FIGURE 44 FIGURE 45
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From the above analysis, it is clear that the domain contains more than integers that exceed 3. In
fact, let us obtain a value when x =3-+/2. See FIGURES 48-49:

1 FE™ T I‘Fi T FE™ T [ T d FE FE™
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TRIN FAD ATO FONL EATT HATH Al AOTO FOWC =758 EATT

FIGURE 48 FIGURE 49

For the sequence s, =+/n—3, we consider only positive integer inputs. By definition, a sequence

is a function whose domain is the set of positive integers. See FIGURES 50-54. Make sure the
MODE is SEQUENCE, not FUNCTION.
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FIGURE 52 FIGURE 53
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FIGURE 54

Note that in sequence graphing, the points are discrete or isolated (separated) in contrast to
function graphing where all the points are connected.

VI1. A student asserts that the following arrowed diagram represents a function from the set A
into the set B if the student constructs arrows as follows: o, =g, o, =0, o, —n,.

The student is missing the fact that in order for an arrowed diagram model to constitute a
function, each element in the domain A must map to one and only one element in the codomain
B. This is not the case since the element -, € A does not map to any element in B.

VI11. A teacher in algebra tells his students that the following property of radicals is always true:
Ja-b =+/a-b. A student then notices the following demonstration in the textbook that shows
—1=1:-1=i’=i-i=+J=1-+=1=+-1-—1=+/1 =1. The teacher is stunned! He/she has neglected
to consider an exception. The problem lies in the step

J(E1)-(-2) =1 =1 while V=1-V=1=i-i =i?=~1.The rule that

f(x)=2-x+1land g(x)= X== l

(fog)(x)= = (le= (X—1+lj Xx—-1+1=x and
(g0 f)(x)= ( ()) §(2-x-+1)= (2 Xerl 1} Zéx=

Ja-b =+a-b works if at least one of the factors is non-negative which is not the case; for
both factors are equal to -1. This is the exception to this property of radicals.
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IX. Consider the following improper use of a well-known algebraic property involving quadratic
equations:

The student then checks the solutions:

x=5: (6-x)-(x-9)=—4
(6-5)-(5-9)=—4

1.-4 — 4

—4 =4

x=10: (6-x)-(x-9)=-4
(6-10)-(10-9)=—4

41 — 4

-4 =-4

Both solutions check! Is this a shortcut to the traditional method?

What is wrong with the method?

Show that the method works on the following quadratic equations:
(7-x)-(x-9)=—-3and (8—x)-(x—-9)=-2.

Are there any others in the family that work via this erroneous method?
Solve each of these problems correctly.

Reconcile the above situation with the quadratic equation x-(x—5) =—6.

One here is applying the zero factors property incorrectly. It is indeed the case that if
If a,beR st. a-b=0, then (a=0)v(b=0).This is easily proven. For suppose that

a-b=0but a=0.We show b=0.
1 .1 1 1 , : .
a¢0:>g exists. 5-0:5-(a-b):(g-aj-b:1-b:b:>b = 0. If one applies this false narrative

to these problems where the right hand side is not zero, the gimmick actually works. We consider
(7-x)-(x—9)=-3 and (8—-x)-(x—9)=—-2. Observe the following:
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x=10: (7-x):(x-9)=-3
(7-10)-(10-9)=-3
~3.1 -3

x=10: (8-x)-(x-9)=-2
(8-10)-(10-9) =2

—2.1 =-2

—2 =2

It is amazing that this gimmick actually works for the family (k—x)-(x—9)=k-10, k e Z.

To see this, note that
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k—x)-(x-9)=k-10

k—x=k-10)v(x-9=k-10)
x=-10)v(x=k-10+9)

x=10)v(x=k-1)

(
(
(-
(

The check is furnished below:

x=k-1: (k-x)-(x-9)=k-10
(k—(k-1))-(k-1-9)=k-10
(k—k+1)-(k=10) =k-10
1.(k-10) —k-10
k-10 =k-10
x=10: (k—x)-(x-9)=k-10
(k—10)-(10-9)=k-10
(k—10)-1 =k-10
k-10 =k-10

On the other hand, this gimmick does not work on the equation x(x—5) =—6; for
(x=—6)v(x-5=-6) = (x=-6)v(x=-1).
Check:

x=-6: x:(x-5)=-6

—6-(-6-5)=-6
-6--11 =-6
66 =—6 (False!)
x=-1: x-(x-5)=-6
-1.(-1-5)=-6
-1.-6 =—6
6 =—6 (False!)

The correct method for solving this problem is as follows:
X-(X=5)=—6<Xx*+5:x+6=0<(x—2):(x-3)=0<>(x-2=0)v(x-3=0) <= (x=2)v(x=3).

To solve the problems (7—x)-(x—9)=-3 and (8—x)-(x—9)=-2correctly, we of course,
proceed as follows:
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(7-%)+(x-9)=-3< —x*+16-Xx-63=0< X’ -16-x+63=0< (X—=7)-(x-9)=0< (x-7=0)v(x-9=0) < (x=7)v(x=9).
(8=%)(x-9)=—2 -x*+17-x-72=0 x*-17-x+72=0 < (x-8)-(x-9) =0 (x-8=0) v (x-9=0) < (x=8)v(x=9).

In order to correctly solve the family of equations of the form (k —x)-(x—9) =k-10, k eZ,
proceed as follows either by factoring or via the quadratic formula:

By factoring, we obtain

(k=x)-(x=9)=k-10< —x*+k-x+9-x-9-k=k-10 <= x* -k -x-9-x+9-k=10-k <
x? (k+9) X+9-k=10-k < x° —(k+9) x+9-k+k—10=0<:>xz—(k+9)-x+(10-k—10)=0<:>
(x-10)-(x—(k—-1))=0<>(x-10=0)v (x—k+1=0) < (x=10)v (x =k -1).

If we employ the quadratic formula, we obtain from the quadratic equation
x* —(k+9)-x+(10-k—10) =0,

L9 J[~(k+9)] ~4-1-(20-k-10) (k+9) (-1 (k+9) ~4-(10-k~10) _

2.1 2
(k+9)i\/(k2+18.k+81—40~k+40) (k+9)= (K ~22-k+121)  (k+9)(k-11)’
2 B 2 2 )
(k+9)+y(k=12)" | [(k+9)-y/(k-12)" | (Kk+9+k-11) (k+9—(k-11
2 v 2 ZL 2 jv[ ; )jz

(2~k—2}v(k+9—k+llj:2~(k—l) 20 ~ (k=1)v10.
2 2 2 2

X. Consider the trigonometric equation cos”@—cosd =0; 0< @ < 2- . This trigonometric
equation is of the second degree. Hence one might erroneously believe based on the study of
polynomial theory that there can be no more than two roots. Is this correct? Explain. The
conjecture is incorrect and is based on the theory of polynomial equations where any polynomial
equation of degree two must have exactly two roots (not necessarily real and not necessarily
distinct) by the n zeros theorem. Actually this trigonometric equation possesses THREE roots in
the indicated interval. One can obtain this via multiple perspectives. Let us initially furnish an
algebraic solution:

cos?§—cosd =0« cosf-(cosd—1)=0«< (cosd=0)v(cosd-1=0) <
3.7

(COS¢9=O)V(C080=1)<:>[(Hz%jv(ﬁzTDv(G:O)e[O,Zﬂ).
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A second method would be to graph the equations in TRIG MODE and use a graphing utility
plus a TABLE FEATURE as well as the Solve Command. Please see FIGURES 55-66:

|

Fow O 5 A
v{— Zoam Edlt ~ ALl |Stulef: :-:.>.5..T ]

yi(x) Ccostx) )™ 2—cos ()

MAIN A AUTO FUNC MAIN FAD AOTO FUNC
FIGURE 55 FIGURE 56
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XI. Many students confuse number properties such as the commutative and associative
properties. On the set of real numbers, can one find a binary operation that is: (a). commutative
and associative; (b). not commutative and not associative; (c). associative but not commutative;
(d). commutative but not associative. Hence the properties of commutativity and associativity are
logically independent in the sense that neither one implies the other. Here are some examples:

(a). The binary operations of addition and multiplication on the set Z of integers is both
commutative and associative. A more esoteric binary operation * which is both commutative and
associative is as follows: Let a,b € Z such that axb=a-+b+a-b. To verify this, note that

bxa=b+a+b-a.Since a,b e Z which commute under ordinary addition and multiplication, the

result is verified yielding a*b =b=*a.To show that * is associative requires a bit more
verification. Let a,b,c € Z. Then

(axb)*c=(a+b+a-b)xc=(a+b+a-b)+c+(a+b+a-b).-c=a+b+a-b+c+a-c+b-c+a-b-c.
a*(bxc)=a+(b+c+b-c)+a-(b+c+b-c)=a+b+c+b-c+a-b+a-c+a-b-c.

Since addition is commutative and associative in Z, upon comparing final entries in the two

calculations, we can conclude that (a*b)*c = a*(b*c).

(b). The binary operations of subtraction and division in the set Z of ordinary integers are neither
commutative nor associative and a counterexample suffices for each. Let
a=20,b=10and c=2. Then a—b=20-10=10=-10=10—20=b—a. (Subtraction is not

commutative). (a—b)—c=(20-10)-2=10-2=8%12=20-8=20—(10-2)=a—(b—c).
(Subtraction is not associative).
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a+b=20+10=2= % =10+20=b+a. (Division is not commutative).

(a+b)+c:(20+10)+2=2+2:1¢4:20+5=20+(10+2)= a+(b+c).(Division is not
associative).

A more interesting example is that of exponentiation. We note that in the set of integers, this
operation is neither commutative nor associative:

Let a=2, b=3and c=4. Then a° =2° =9 = 9=23% =b?. (Exponentiation is not commutative).

Is there one non-trivial case where a° =b®? YES! Let a=4 and b=2.Then
a’=4*=16=2*=Db".

(a°) =(2°)' =2°* = 2 = 4096 = 2417851639229258349412352 = 2 = 2/ = a*),
(Exponentiation is not associative).
(c). The operation o which denotes function composition is associative, but not commutative.

To see that the composition of functions is not necessarily commutative, let f and g be functions

defined as follows: f(x)zx2 and g(x)=x+1.Then
(gof)(x)zg :g( ) x> +1Vx e Domain of f =R
+

(fog)(x)= f(g( )= T (x

The calculator can form the composition of two functions. See FIGURES 67-71:

):(x+1)2 =x*+2-X+1Vx e Domain of g =R.
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A numerical example now shows that these functions are different; for in most cases, different
outputs will result from the same input. For example, let x =5.Then

(g f)(5)=9(f(5))=0(5")=9(25)=25+1=26%36=6"=f (6)=f (5+1)=f (g(5))=(f -9)(5).
Note that if f and g are a pair of inverse functions, then the functions commute. To cite an

example, let f (x)=2-x+1and g(x):XT_l. Then

(fog)(x)=f(g(x))="f (XT_lj:Z-(XT_lﬂj: x—1+1=x and

2-x+1—1) 2-X
= =X.

(9 1)(0)=9(1 () =g(2xe1) o 222122

(d). The following binary operation *on 7 is commutative, but not associative:

Let * be defined as follows: If a,b e Z, then a*b =a’+b? Note that
a*b=a’+b?>=b?+a’?=b=*a.Since a,beZ=2a* b’ecZ=a’+b*’cZ=a’*+b*>=b*+a°
This establishes that * is commutative. In contrast, * is not associative. To see this, let
a=3 b=4and c=5. Then

(a*b)*c=(3+4)*5=(3"+4)*5=(9+16)*5=25%5=25" +5° =625+ 25=650 =
1690 =9+1681=3" +41° =3%41=3%(16+25) =3% (4 +5°) =3*(4*5) =a*(b*c).

XI1. A student remarked that he found a prime number generating formula in the sense that all
the output values are prime numbers: p(n)=n”*-7-n+53; neW ={0,1,2,3,4,5,...}. By going
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far enough out in the sequence, prove him wrong! Here we must persevere in problem solving
and use appropriate tools strategically.

In order to achieve our goal, we use a hand-held graphing calculator and consider the following
inputs and outputs in FIGURES 72-80:

T wER Fzr 4 TFE™ FE™ 5
LATH TSL':IIE' Rt ] v{— Zoam Edlt. <ALl |Stalefs s ]
1: Humber 3 FLOTE
R H WIET wul=ed = 7o+ 53
difatrix v 28 BEre isPrimeryl
SiComplex b 3EE 43=
Eistatistics ¥ 452 =
riFrobability ¥ 55= 4=
i les g &7 ue=
31 H1gebra ¥ rinoh ur=
A:iTrig ¥ Siand ug=
Lt llas
perbolic : = - -
5 1zPrRLMer, v2Cur=izsPrimeCyl Cx22>
THRIN FAD ALTO FUNC THRIN FAD ALTO FUNL
FIGURE 72 FIGURE 73
1 Few [ _Fz JF4 JFE™]_ F&™ i T T -
- E Zoair Editl ¥ |FI11 Stulefs s T ] Setup : s Ll [T Pastine e
oF ul Jz
'(butblgt — THELE SETUF | Y _53. e
T A 1. ar. truc
atbl..oooienns [1. ] N 43, Lrue
Graph <-* Table OFF+ i- 4. true
. . Fue
Independent.. ... AUTO=+ 5 Az troe
Ent.er=SAUE ESC=CAHCEL E. 47 tLrue
ql0= . 53 true
vl O d=n"2—"P%u+53 x=0.
TVFE + [EMTERI=OK AND [ESCIZCANCEL MRTN FAD ALTO FUNE
FIGURE 74 FIGURE 75
"o e sebuple s ¢ e o e
ul
197, tue
T 223, true
. 251, tue
ER 221, tLrue
2. 313, true
21, 347, Lirue
22, 383, Lrue
. 23, 421, Lrue
x=8. x=16.
TATH FAD ALTO FONL AR FAD ALTO FONL
FIGURE 76 FIGURE 77

u
i

=1, T true
x=24d.

HalW FAD ALTO FUKC
FIGURE 78

HMAlH ERD ALTO FUHC

FIGURE 79

26



e 1] 7 I
- f— T rri P
=

2, 3r3. tue

41, 447, tLrue

EEN 523, tue

43, 51, 1L

EEN 681,

45, rE3. false

45, 247, tue

47, 933, true
v2(xd=falze

MAIN FAD ALTO FUNC
FIGURE 80

THANK YOU FOR YOUR PARTICIPATION AT THIS WORKSHOP DURING THE
THE 7™ ANNUAL KCM CONFERENCE ENGAGE 2015 IN LEXINGTON, KY!
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