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Thinking about the future is risky business. Past experience tells us that to-
day’s first graders will graduate high school most likely facing problems that do not
yet exist. Given the uncertain needs of the next generation of high school gradu-
ates, how do we decide what mathematics to teach? Should it be graph theory or
solid geometry? Analytic geometry or fractal geometry? Modeling with algebra or
modeling with spreadsheets?

These are the wrong questions, and designing the new curriculum around answers
to them is a bad idea.

For generations, high school students have studied something in school that has
been called mathematics, but which has very little to do with the way mathematics
is created or applied outside of school. One reason for this has been a view of cur-
riculum in which mathematics courses are seen as mechanisms for communicating
established results and methods — for preparing students for life after school by
giving them a bag of facts. Students learn to solve equations, find areas, and calcu-
late interest on a loan. Given this view of mathematics, curriculum reform simply
means replacing one set of established results by another one (perhaps newer or
more fashionable). So, instead of studying analysis, students study discrete math-
ematics; instead of Euclidean geometry, they study fractal geometry; instead of
probability, they learn something called data analysis. But what they do with bi-
nary trees, snowflake curves, and scatter-plots are the same things they did with
hyperbolas, triangles, and binomial distributions: They learn some properties, work
some problems in which they apply the properties, and move on. The contexts in
which they work might be more modern, but the methods they use are just as far
from mathematics as they were twenty years ago.

There is another way to think about it, and it involves turning the priorities
around. Much more important than specific mathematical results are the habits
of mind used by the people who create those results, and we envision a curriculum
that elevates the methods by which mathematics is created, the techniques used
by researchers, to a status equal to that enjoyed by the results of that research.
The goal is not to train large numbers of high school students to be university
mathematicians, but rather to allow high school students to become comfortable
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with ill-posed and fuzzy problems, to see the benefit of systematizing and abstrac-
tion, and to look for and develop new ways of describing situations. While it is
necessary to infuse courses and curricula with modern content, what’s even more
important is to give students the tools they’ll need to use, understand, and even
make mathematics that doesn’t yet exist.

A curriculum organized around habits of mind tries to close the gap between what
the users and makers of mathematics do and what they say . Such a curriculum lets
students in on the process of creating, inventing, conjecturing, and experimenting;
it lets them experience what goes on behind the study door before new results are
polished and presented. It is a curriculum that encourages false starts, calculations,
experiments, and special cases. Students develop the habit of reducing things to
lemmas for which they have no proofs, suspending work on these lemmas and on
other details until they see if assuming the lemmas will help. It helps students look
for logical and heuristic connections between new ideas and old ones. A habits of
mind curriculum is devoted to giving students a genuine research experience.

Of course, studying a style of work involves working on something, but we should
construct our curricula and syllabi in a way that values how a particular piece
of mathematics typifies an important research technique as much as it values the
importance of the result itself. This may mean studying difference equations instead
of differential equations, it may mean less emphasis on calculus and more on linear
algebra, and it certainly means the inclusion of elementary number theory and
combinatorics.

This view of curriculum runs far less risk of becoming obsolete before it is even
implemented. Difference equations may fall out of fashion, but the algorithmic
thinking behind their study certainly won’t. Even if the language of linear algebra
becomes less useful in the next century than it is now, the habit of using geomet-
ric language to describe algebraic phenomena (and vice-versa) will be a big idea
decades from now. At the turn of the 20th century, the ideas and thought exper-
iments behind number theory (the decomposition of ideals into prime factors in
number fields, for example) was smiled upon as the pastime of a dedicated collec-
tion of intellectuals looking for the elusive solution to the Fermat conjecture; at the
turn of the 21st century, even after it appears that Fermat is settled, these same
habits of mind that led to class field theory are at the forefront of applied research
in cryptography.

This approach to curriculum extends beyond mathematics, and reflection shows
that certain general habits of mind cut across every discipline. There are also more
mathematical habits, and finally, there are ways of thinking that are typical of
specific content areas (algebra or topology, for example).

In the next sections, we describe the habits of mind we’d like students to develop.
In high school, we’d like students to acquire

• some useful general habits of mind, and
• some mathematical approaches that have shown themselves worthwhile over

the years.

These are general approaches. In addition, there are content-specific habits that
high school graduates should have. We’ve concentrated on two of the several pos-
sible categories:
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• some geometric habits of mind that support the mathematical approaches,
and

• some algebraic ways of thinking that complement the geometric approaches.
This is a paper in progress. The first draft was for the teacher advisory board that

meets once each month to give us guidance in our Connected Geometry curriculum
development work. This current version is for a more general audience of people
working in secondary mathematics education reform. A customized revision will
become the introduction to the geometry curriculum we publish.

Habits of Mind

At top level, we believe that every course or academic experience in high school
should be used as an opportunity to help students develop what we have come
to call good general habits of mind. These general habits of mind are not the
sole province of mathematics – the research historian, the house-builder, and the
mechanic who correctly diagnoses what ails your car all use them. Nor are they
guaranteed byproducts of learning mathematics – it is the major lament of the
reform efforts that it has been shown possible for students to learn the facts and
techniques that mathematicians (historians, auto diagnosticians. . . ) have developed
without ever understanding how mathematicians (or these others) think.

Good thinking must apparently be relearned in a variety of domains; our further
remarks will be specific to the domain of mathematics. So, at top level, we’d
like students to think about mathematics the way mathematicians do, and our
experience tells us that they can. Of course, that doesn’t mean that high school
students should be able to understand the topics that mathematicians worry about,
but it does mean that high school graduates should be accustomed to using real
mathematical methods. They should be able to use the research techniques that
have been so productive in modern mathematics, and they should be able to develop
conjectures and provide supporting evidence for them. When asked to describe
mathematics, they should say something like “it’s about ways for solving problems”
instead of “it’s about triangles” or “solving equations” or “doing percent.” The
danger of wishing for this is that it’s all too easy to turn “it’s about ways for
solving problems” into a curriculum that drills students in The Five Steps For
Solving A Problem. That’s not what we’re after; we are after mental habits that
allow students to develop a repertoire of general heuristics and approaches that can
be applied in many different situations.

In the next pages, you’ll see the word “should” a lot. Take it with a grain of salt.
When we say students should do this or think like that, we mean that it would be
wonderful if they did those things or thought in those ways, and that high school
curricula should strive to develop these habits. We also realize full well that most
students don’t have these habits now, and that not everything we say they should be
able to do is appropriate for every situation. We’re looking to develop a repertoire
of useful habits; the most important of these is the understanding of when to use
what.

Students should be pattern sniffers. Criminal detection, the analysis of litera-
ture or historical events, and the understanding of personal or national psychology
all require one to be on the look-out for patterns.
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In the context of mathematics, we should foster within students a delight in find-
ing hidden patterns in, for example, a table of the squares of the integers between 1
and 100. Students should be always on the look-out for short-cuts that arise from
patterns in calculations (summing arithmetic series, for example). Students should
fall into the habit of looking for patterns when they are given problems by someone
else (“which primes are the sum of two squares?”), but the search for regularity
should extend to their daily lives and should also drive the kinds of problems stu-
dents pose for themselves, convincing them, for example, that there must be a test
for divisibility by 7.

Students should be experimenters. Performing experiments is central in math-
ematical research, but experimenting is all too rare in mathematics classrooms.
Simple ideas like recording results, keeping all but one variable fixed, trying very
small or very large numbers, and varying parameters in regular ways are missing
from the backgrounds of many high school students. When faced with a mathemat-
ical problem, a student should immediately start playing with it, using strategies
that have proved successful in the past. Students should also be used to perform-
ing thought experiments, so that, without writing anything down, they can give
evidence for their answers to questions like, “What kind of number do you get if
you square an odd number?’

Students should also develop a healthy skepticism for experimental results. Re-
sults from empirical research can often suggest conjectures, and occasionally they
can point to theoretical justifications. But mathematics is more than data-driven
discovery, and students need to realize the limitations of the experimental method.

Students should be describers. Many people claim that mathematics is a lan-
guage. If so, it is a superset of ordinary language that contains extra constructs
and symbols, and it allows you to create, on the fly, new and expressive words and
descriptions. Students should develop some expertise in playing the mathematics
language game. They should be able to do things like:

• Give precise descriptions of the steps in a process. Describing what you
do is an important step in understanding it. A great deal of what’s called
“mathematical sophistication” comes from the ability to say what you mean.

• Invent notation. One way for students to see the utility and elegance of
traditional mathematical formalism is for them to struggle with the problem
of describing phenomena for which ordinary language descriptions are much
too cumbersome (combinatorial enumerations, for example).

• Argue. Students should be able to convince their classmates that a particu-
lar result is true or plausible by giving precise descriptions of good evidence
or (even better) by showing generic calculations that actually constitute
proofs.

• Write. Students should develop the habit of writing down their thoughts,
results, conjectures, arguments, proofs, questions, and opinions about the
mathematics they do, and they should be accustomed to polishing up these
notes every now and then for presentation to others.

Formulating written and oral descriptions of your work is useful when you are part
of a group of people with whom you can trade ideas. Part of students’ experience
should be in a classroom culture in which they work in collaboration with each
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other and in which they feel free to ask questions of each other and to comment on
each other’s work.

Students should be tinkerers. Tinkering really is at the heart of mathematical
research. Students should develop the habit of taking ideas apart and putting
them back together. When they do this, they should want to see what happens
if something is left out or if the pieces are put back in a different way. After
experimenting with a rotation followed by a translation, they should wonder what
happens if you experiment with a translation followed by a rotation. When they
see that every integer is the product of primes, they should wonder, for example, if
every integer is the sum of primes. Rather than walking away from the “mistake”

a

b
+

c

d
=

a + c

b + d

they should ask:
• Are there any fractions for which this is true?
• Are there any sensible definitions for a binary operation + that would make

this statement true?

Students should be inventors. Tinkering with existing machines leads to ex-
pertise at building new ones. Students should develop the habit of inventing math-
ematics both for utilitarian purposes and for fun. Their inventions might be rules
for a game, algorithms for doing things, explanations of how things work, or even
axioms for a mathematical structure.

Like most good inventions, good mathematical inventions give the impression of
being innovative but not arbitrary. Even rules for a game, if the game is to intrigue
anyone, must have an internal consistency and must make sense. For example, if
baseball players were required, when they arrived at second base, to stop running
and jump up and down five times before continuing to third, that would be arbitrary
because it would not “fit” with the rest of the game, and no one would stand for
it. Similarly, a Logo procedure that just produced a random squiggle on the screen
wouldn’t be a very interesting invention. The same could be said of those “math
team” problems that ask you to investigate the properties of some silly binary
operation that seems to fall out of the sky, like �, where

a � b =
a + 2b

3

It’s a common misconception that mathematicians spend their time writing down
arbitrary axioms and deriving consequences from them. Mathematicians do enjoy
deriving consequences from axiom systems they invent. But the axiom systems
always emerge from the experiences of the inventors; they always arise in an attempt
to bring some clarity to a situation or to a collection of situations. For example,
consider the following game (well, it’s more than a game for some people):

Person A offers to sell person B something for $100. Person B offers
$50. Person A comes down to $75, to which person B offers $62.50.
They continue haggling in this way, each time taking the average of the
previous two amounts. On what amount will they converge?
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This is a concrete problem, and its solution leads to a general theorem: If person
A starts the game at a and person B makes an offer of b, the limit of the haggle
will be a+2b

3 . This might lead one to define the binary operation �, where

a � b =
a + 2b

3

and to derive some of its properties (for example, the fact that a � b is closer to
b than it is to a explains why they never tell you how much a car costs until you
make a first “offer”). The invention of � no longer seems arbitrary, even though the
consequences of the definition might become quite playful and far removed from
the original situation that motivated it.

The practice of inventing a mathematical system that models a particular phe-
nomenon is crucial to the development of mathematics.1 Another technique math-
ematicians use to invent things is to take an existing system and to change one
feature. That’s how non-Euclidean geometry got started.

An important ingredient in the habit of inventing things is that students begin
to look for isomorphisms between mathematical structures. It would be wonderful
if students were in the habit of looking for different instances of the same mathe-
matical structure, so that they could see, for example, that the operation of taking
the union of two sets looks very much like the operation of taking the sum of two
numbers.

Students should be visualizers. There are many kinds of visualization in math-
ematics. One involves visualizing things that are inherently visual — doing things
in one’s head that, in the right situation, could be done with one’s eyes. For exam-
ple, one might approach the question “How many windows are there in your house
or apartment?” by constructing a mental picture and manipulating the picture in
various ways.

A second involves constructing visual analogues to ideas or processes that are
first encountered in non-visual realms. This includes, for example, using an area
model to visualize multiplication of two binomials

1One reason for this is that the mathematical models often find utility outside the situations

that motivated them. A classic example is the notion of a vector space. The notion was originally

developed to describe ordinary vectors (directed line segments) in two and three dimensions, but

many other mathematical objects (polynomials, matrices, and complex numbers, for example)

form vector spaces.
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(a + b)2 = a2 + 2ab + b2

(or, equivalently, any two numbers like 23 and 42 or 31
2 and 81

3 ). The purpose of
such an analogue may be to aid understanding of the process, or merely to help
one keep track of a computation. Other examples include visualizations of things
too small, too large, or too diverse to be seen; visualizations of relationships rather
than objects themselves; and so on.

Finally, there are, for some people, visual accompaniments (not analogues, ex-
actly) to totally non-visual processes. Taking the multiplication of binomials as
an example again, one might actually picture the symbols moving about in some
orderly fashion to help structure the computation. The imagery may not clarify
meaning — it may just support the task, focus one’s attention, or the like – but
such visualizations do become part of mathematicians’ repertoire.

Subdividing these three kinds of visualization a bit more finely, we get categories
like these:

• Reasoning about simple subsets of plane or three dimensional space with
or without the aid of drawings and pictures. This is the stuff of classical
geometry, extended to include three dimensions.

• Visualizing data. Students should construct tables and graphs, and they
should use these visualizations in their experiments.

• Visualizing relationships. Students should be accustomed to using the plane
or space as a drawing pad to create and work with diagrams in which size
is irrelevant (Venn diagrams and factor trees, for example).

• Visualizing processes. Students should think in terms of machines. All
kinds of visual metaphors (meat-grinders, function machines, specialized
calculators, and so on) support this kind of imagery. Students should also
use many visual representations for the input-output pairing associated with
a function, including, if the process under consideration happens to be a
function from real numbers to real numbers, ordinary Cartesian graphs.

• Visualizing change. Seeing how a phenomenon varies continuously is one of
the most useful habits of classical mathematics. Sometimes the phenomenon
simply moves between states, as when you think of how a cylinder of fixed
volume changes as you increase the radius. Other times, one thing blends
into another: think of the many demonstrations that show ellipses becoming
hyperbolas. This habit cuts across many of the others, including some that
seem to deal with explicitly discrete phenomena.

• Visualizing calculations. There’s a visual component to “mental arithmetic”
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and estimation that is often ignored. Students should be in the habit of vi-
sualizing calculations (numerical and algebraic), perhaps by seeing numbers
flying around in some way. A particularly useful habit in arithmetic is, given
an integer, to imagine what it looks like when it is factored into primes.

Students should be conjecturers. The habit of making plausible conjectures
takes time to develop, but it’s central to the doing of mathematics. Students
should at least be in the habit of making data-driven conjectures (about patterns
in numbers, for example), but ideally, their conjectures should rest on something
more than experimental evidence. For example, in predicting the behavior of the
Logo procedure:

to inspi :side :angle :increment
fd :side rt :angle
inspi :side :angle+:increment :increment

end

students should start by experimenting with the procedure, perhaps like this:

inspi 5 0 1 inspi 5 5 1 inspi 5 3/10 3
inspi 5 4 2 inspi 5 3 3 inspi 5 3/2 3
inspi 5 1 3 inspi 5 2 3 inspi 5 1/2 3

and looking at the pictures, but their conjectures should be based on a combina-
tion of the anecdotal evidence gained from the experiments, previous experience,
and a conscious understanding and awareness of the algorithm that produces the
pictures. Here are two incorrect conjectures that one might derive from the above
nine experiments:

• If A + I = 6, there are two pods.
• If I = 1 there will be two pods.

The second one is deeper than the first, and an attempt to justify it leads to an
analysis of the procedure.

Students should be guessers. Guessing is a wonderful research strategy. Start-
ing at a possible solution to a problem and working backwards (or simply checking
your guesses) often helps you find a closer approximation to the desired result.
Checking a guess often gets you familiar with the problem at hand; in the process
of checking, students often find new insights, strategies, and approaches.

Mathematical approaches to things

The above habits of mind are quite general. There are some more specific things
that are quite common in mathematics but maybe not so common outside of math-
ematics. Here are some of the ways mathematicians2 approach things:

2Of course, by mathematicians, we mean more than just the members of AMS; we mean the

people who do mathematics. Some mathematicians are children; some would never call themselves

mathematicians.
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Mathematicians talk big and think small. In mathematical lectures and talks,
you hear things like:

Let K be a field, V and W vector spaces over K of dimensions n and
m, respectively. If n > m and T : V → W is linear, then T isn’t 1-1.

Mathematicians in the audience are saying to themselves:

You can’t map three dimensions into two with a matrix unless things
get scrunched.

This translation to special cases is almost automatic. Of course, it requires that
a collection of concrete examples is always at your fingertips. Developing this
collection takes time, and it also takes a curriculum that begins with problems and
examples from which general theories gradually emerge. Along these lines,

Mathematicians talk small and think big. The simplest problems and sit-
uations often turn into applications for deep mathematical theories; conversely,
elaborate branches of mathematics often develop in attempts to solve problems
that are quite simple to state. For example:

• Ever notice that the sum of two squares times the sum of two squares is
also a sum of two squares? For example, 13 = 9 + 4, 5 = 4 + 1, and

65 = 13 × 5 = 16 + 49

How come? A beautiful answer lies in the arithmetic of the Gaussian in-
tegers. Since (a + bi)(a − bi) = a2 + b2, our facts about 13 and 5 can be
written like this:

13 = (3 + 2i)(3 − 2i)

5 = (2 + i)(2 − i)

Multiply these equations together and calculate like this:

13 × 5 = (3 + 2i)(3 − 2i) × (2 + i)(2 − i)

= (3 + 2i)(2 + i) × (3 − 2i)(2 − i)

= (4 + 7i) × (4 − 7i)
= 16 + 49

• Just about all of algebraic number theory can be traced back to attempts to
settle the Fermat conjecture (that there are no positive integral solutions to
the equation xn +yn = zn if n > 2), a problem that no doubt came from at-
tempts to generalize techniques for finding Pythagorean triples. The recent
announcement that the conjecture has been settled (and the accompanying
descriptions of what went into the proof) are perfect examples of thinking
big.
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Much of this “thinking big” goes under the name “abstraction.” “Modeling” is also
used to describe some of it. Once again, getting good at building and applying
abstract theories and models comes from immersion in a motley of experiences;
noticing that the sum of two squares problem connects to the Gaussian integers
comes from playing with arithmetic in both the ordinary integers and in the com-
plex numbers and from the habit of looking for similarities in seemingly different
situations. But, experience, all by itself, doesn’t do it for most students. They need
explicit help in what connections to look for, in how to get started. Unfortunately
(for curriculum developers), sometimes the only way to do this is to apprentice with
someone who knows how to play the game.

A common technique for building abstractions and models is to derive properties
of an object by studying the things you can do to it:

Mathematicians use functions. One of the effects of abstraction on mathemat-
ics is that the methods and operations of one generation become the objects of
study for the next. Algebra today is the study of binary operations. Geometry
after Klein and Hilbert is the study of transformations on very general geomet-
ric “objects.” Sometimes, abstractions are so powerful that they can be applied
to transformations on themselves; the set of mappings from one vector space to
another can be given the natural structure of a vector space.

Studying the change mechanisms rather than the things that are changed is the
study of functions. We’ve identified three broad categories of uses for functions in
mathematics:

(1) Algorithms are useful in finding and describing coherence in calculations,
in finding and describing patterns in calculations, and in finding and de-
scribing sets of repeated steps. An algorithm describes how one thing is
transformed into another. It is an algebraic creature.

(2) Dependences are useful in finding and describing connections among phys-
ical phenomena (especially phenomena of physics and mechanics), in finding
and describing continuous variations (especially over time), and in finding
and describing causal phenomena. A dependence concentrates on how one
thing is affected by another. It is an analytic creature.

(3) Mappings are useful in counting. A typical use of mappings is to take a
well known set or structure, define a correspondence between its elements
and the elements of a less well known set, and then to estimate how far
away the function is from being a 1-1 correspondence between the sets. In
this sense, mappings are combinatorial creatures.

In the materials we are developing as part of our Connected Geometry project,
we encourage students to define functions on geometric objects (for example, the
function that measures the sum of the distances from a point to the sides of a fixed
triangle), use functions to solve geometric problems (find the largest box that can
be made from a rectangle by cutting out little squares from the corners and folding
up the sides), and help students create functions that act as translators from one
point of view to another:

Mathematicians use multiple points of view. One way to look at the complex
number system is through the lens of algebra (the theory of equations, for example).
Another is to use analysis (continuous functions and the like). Still another is to
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think arithmetic (the equation xn − 1 = 0), or geometry (regular polygons). But
the real way to study the complex numbers is to use all these approaches at once.
Many of the stunning results obtained by Gauss came from his ability to think
of the same thing from several points of view (or, put another way, to equip the
same set with several different structures). The book “How to Cut a Triangle” by
Alexander Soifer3 is a beautiful example of how new results come from looking at
old things in unusual ways.

One very productive interaction in mathematics has been between discovery (or
invention) and explanation:

Mathematicians mix deduction and experiment. There is a brewing con-
troversy about the role of proof in mathematics curricula (especially in pre-college
mathematics). Some reformers insist that students no longer need to establish their
conjectures with deductive proof. This is especially true about conjectures that can
be easily checked in thousands of cases with appropriate computational environ-
ments. Proof in school mathematics is seen as an add-on ritual (usually arranged
in two columns) that allegedly convinces people of facts for which they need no
convincing.

On the other hand, mathematics in western culture has had a 25-century love
affair with proof. Ask mathematicians what makes their discipline different from
others, and many will say that mathematicians prove things; they’ll say that the
standard for truth in mathematics is just higher than anywhere else; they’ll say that
mathematicians simply are not convinced of a fact, in spite of what would seem
like overwhelming evidence to people in other (even scientific) disciplines, unless
the fact comes with a proof.

Well, conviction comes in many ways, and truth is an elusive idea, even to
people who dedicate their lives to the study of such things. The fact is that in
mathematical research, proof plays very important roles that have little to do with
conviction or truth. Think about the last time you worked on a problem. You
probably started by experimenting, noticing something, and then wondering why.
Then you said something like, “Well, it would be half as big if I knew that this
other thing was. . . .” Right away, explanation becomes a research technique.

Proof and explanation can be used to enhance an investigation in at least two
ways:

(1) Proof establishes logical connections among statements. When you prove a
statement, you hardly ever start with first principles; instead, you establish
logical connections between what you want and what you know. Instead of
proving

If p is a prime and p is a factor of ab, then either p is a factor of
a or p is a factor of b.

you prove (if you use the typical argument to establish this result)

If the greatest common divisor of two integers can be written as
a linear combination of the two integers, then if p is a prime and
p is a factor of ab, then either p is a factor of a or p is a factor
of b.

3Center for Excellence in Mathematics Education, Colorado Springs, 1990.
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It’s this connection-making that is one of the most compelling reasons for
looking for a proof. Making connections gives you the feeling of explaining
your result, and that’s intellectually satisfying. And, on a more pragmatic
level, the connections you make often point you towards new results:

(2) The proof of a statement suggests new theorems. If you know that something
happens on the basis of an experiment, then basically you know that the
thing happens. If you are able to connect the result to something else, you
have the makings of new or sharper results. For example, here’s a problem
we got from Wally Feurzeig (they say this actually happened at lunch one
day):

A square birthday cake is frosted on top and on the three sides.
How should it be cut for 7 people if everyone is to get the same
amount of cake and the same amount of frosting?

Think about this for a few minutes. Try to reflect on what you are do-
ing as you puzzle with the problem. Perhaps you could come up with an
experimental solution, but many people attack problems like this through
a mixture of deduction and experiment, trying in thought experiments to
picture various subdivisions and whether or not they meet the constraints
stated in the problem. If you work this way and you come to a solution,
the “proof” that your solution does what it’s supposed to will take no work
at all; it will have evolved with the construction of your particular cutting
instructions. The proof isn’t an “add-on” ritual that gets written after the
result is established; it is an integral part of the investigation. When this
happens, you can often say more than you originally intended. For exam-
ple, developing the proof alongside the result lets you say: One way to cut
the cake is to divide the perimeter of the cake into 7 equal parts and then
to connect the subdivision points to the center of the square. In fact, this
solution works for any shape cake for which there is an inscribed circle.

Mathematicians push the language. The drive to make results apply in new
situations is responsible for a great deal of mathematical invention. For example,
the definitions of things like 20 and 3−2 come from wanting the rules for positive
integral exponents to hold in other cases. Similarly, mathematicians look for use-
ful interpretations of negative numbered rows in Pascal’s triangle, square roots of
negative numbers, and so on.

Another way to say this is that mathematicians assume the existence of things
they want. Suppose 20 existed. How would it have to behave? Sometimes, mathe-
maticians assume the existence of things they don’t want, hoping that they’ll arrive
at a contradiction. Suppose there were a polynomial with no complex root . . . . A
contradiction produces the fundamental theorem of algebra.

Mathematicians use intellectual chants. A mathematician who is engrossed
in a problem spends long periods of time alternating between scribbling on paper
and looking off into space, kind of meditating. This second activity really involves
rehashing logical connections and partial calculations, dozens (maybe hundreds)
of times. There’s something about taking a line of attack and repeating it to
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yourself over and over again that sometimes produces a breakthrough. Maybe these
rehearsals of old ideas are effective because they often start to sound like familiar
other investigations, so that subtle connections to seemingly different ideas are
given a chance to surface. Building a path to this kind of mental activity into
curriculum materials is tough, but it’s not impossible. One way is to include short
descriptions of the ruminations that occur when we work on problems, as Brian
Harvey does in his writing for students.4 Another way is to include interviews with
reflective students who have successfully solved a problem and to ask students to
reflect on and write about how they approached a problem.

Geometric approaches to things

Geometric thinking is an absolute necessity in every branch of mathematics,
and, throughout history, the geometric point of view has provided exactly the
right insight for many investigations (complex analysis, for example).5 Geometers
(amateurs and professionals) seem to have a special stash of tricks of the trade:

Geometers use proportional reasoning. There is a whole family of geometers
(who trace their ancestry back to Euclid) for whom a real number is a ratio of two
magnitudes.6 These are the people who delight in the beautiful theorems about
proportions (“the altitude to the hypotenuse is the geometric mean between the
segments into which it divides the hypotenuse,” for example), who are somehow
able to visualize the product and quotient of two lengths, and who begin a geometric
investigation by looking for constant ratios.

Visualizing proportionality is hard. Computers might help students develop
proportional reasoning in a variety of ways. Measure boxes that contain ratios can
show how two lengths can change size but maintain the same ratio. Software that
allows one to define dilations can help students estimate scale factors necessary to
map one figure onto a similar one. Proportional reasoning is a necessary ingredient
in vectorial methods and in the study of fractal geometry.

Proportions in geometry often express a beautiful blending of numerical and
geometric languages. This is an example of a more general phenomenon:

Geometers use several languages at once. Except in high school texts, there
are no treatments of geometry that use a single technique for solving problems.
Among the languages used by geometers are local languages (turtle geometry, for
example), vectors (including complex numbers), “analytic” geometry (coordinates),
and algebraic languages (the language of algebraic number fields). And, these
languages are often used in the same investigation. This multiplicity of languages
points to the habit of using multiple of points of view.

Even though geometric investigations are carried out with several languages,
geometric results always sound like geometry:

4As in Computer Science Logo Style (3 vols.) MIT Press, Cambridge, MA.
5In fairness, algebra has also come to the rescue of geometry many times. The impossibility of

the famous Greek construction problems was established only after the algebraists got involved.
6A “magnitude” is a length, an area, a volume, or a time span (indeed, the Greeks seem to be

the first to have developed a single theory of proportions that apply to all kinds of magnitudes).
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Geometers use one language for everything. For the past 150 years, the
language of points, lines, angles, planes, surfaces, areas, and volumes has been
applied to seemingly non-geometric phenomena, providing insight and coherence in
many disparate branches of mathematics. For example, instead of saying that 1,
2, 3, and 4 are numbers that satisfy the equation x + y + z + w = 10, geometers
(and most mathematicians), say that (1, 2, 3, 4) is a “point” on the “graph” of
x + y + z + w = 10. The entire graph of the equation (that is the collection
of points that satisfy the equation) is called a “hyper-plane.” Once we’re calling
things like (1, 2, 3, 4) points, we might as well talk about vectors, and then we can
define orthogonal vectors, and even the angle between two vectors.

The strategy is to take a familiar geometric idea, say the cosine of the angle
between two vectors A and B, find a description of that idea that makes sense for
the generalization (in this case, some algebraic expression7 that gives the cosine),
show that the description can be used as a definition of the idea for generalized
“vectors” (in this case, you’d want the algebraic expression to always take values
between −1 and 1, for example), and then to work with this new definition using
familiar geometric language.

In one sense, this is a game, an example of extending the language. But it’s
more than a game: By finding a way to use the language of geometry to describe
a new situation, we get a whole collection of insights that might be true in the
new domain. So, in our geometry of points that look like (1, 2, 3, 4), what’s the
proper analogy for a triangle? Do the angles of a triangle add up to 180◦? Do two
planes intersect in a “line?” Questions like these often point up fruitful lines of
investigation. They also make geometry more powerful, because they extend the
domain over which geometric facts apply.

An example of using geometry-talk to gain new ways to look at things is in
number theory. Around the turn of the century (this one), the mathematician
Hensel was investigating ways for solving algebraic congruences modulo powers of
primes. He invented a collection of techniques that he turned into a number system,
the p-adic integers (p is a prime), and as the work progressed, it began to borrow
heavily from the language of geometry. The geometry in the p-adic integers was
strange indeed: every triangle was isosceles, and circles had infinitely many centers.
But, once you get used to this strange land, geometric language gives you some
ideas about what to expect, and it provides you with some interesting slants on
arithmetic. As it turns out, the geometric analogies were more than just analogies:
It’s possible to realize the geometry of the p-adic integers as the geometry of very
simple fractal-like subsets of the plane. So, things come full circle: The language
of geometry is transported to a non-geometric situation as an aid to describing
arithmetic phenomena. But then the language suggests that there might actually
be an underlying geometry after all, and it turns out that the “non-geometric”
situation has a concrete geometric model.

Now, all mathematicians appreciate the way that geometric language gives coher-
ence to their discipline, but geometers seem to like another aspect of this approach:

7The cosine of the angle between A and B in two or three dimensions is given by A·B
‖A‖ ‖B‖ ,

where the numerator is the dot product and the denominator is the product of two lengths (which

can be expressed as dot products, too).
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they love to use words like point and line when they are really talking about, say,
numbers and sets, because they love the way everything hangs together:

Geometers love systems. We know a teacher in Ohio, Bill Kramer, who has
been enjoying a hobby for about 20 years: Bill has defined a geometry that con-
tains 25 points.8 He has defined lines, triangles, measures, even rotations on his 25
points, and his hobby consists of seeing how far he can push the analogy with Eu-
clidean geometry in this finite world. What attracts Bill to this work is the logical
connectedness of it all; he asks what a reasonable definition for, say parallel lines
would be, and then he sees if the classical theorems about parallels and, say, angles,
hold up in his system.

Geometers like another kind of systematizing in which many special cases are
combined into one large result. One way to do this is to look at families of geometric
events:

Geometers worry about things that change. Because geometry was originally
developed to describe two and three dimensional space, reasoning by continuity has
always had an attraction for geometers. Continuity can be used to systematize
disparate results. So, an angle formed by two chords has measure equal to half the
sum of its arcs. Move the vertex of the angle towards the circle; one arc goes to 0
and the angle becomes an inscribed angle, and a new theorem is born. Then move
the vertex outside the circle, to get another result, and finally, if you like, move it
to infinity to see that parallel chords subtend equal arcs.

Dynamic geometry (The Geometer’s Sketchpad or Cabri , for example) software
can support students in their development of this habit of mind. At the very least,
it can be used to develop conjectures. Think, for example, of a segment parallel
to the bases of a trapezoid and connecting the non-parallel sides. Its length varies
continuously between the longest base and the shortest one. Somewhere, it should
be the average of the two. Where?

Sometimes, you expect things to change and they don’t. Eventually, you learn
how useful that is:

Geometers worry about things that don’t change. Suppose you take a small
rotation of, say, 2◦, followed by a big vertical translation, say 80 feet straight up.
What is the resulting map? A little experimenting suggests that it might be a
rotation about some distant point. How could you check things further? One way
would be to try to find the center of the alleged rotation. And one way to look for
this center is to look for a point that doesn’t move under the transformation.

This searching for invariants under transformations is a key ingredient in geo-
metric investigations. For certain kinds of maps, this leads you into the theory
of eigenvalues. For other kinds, you start thinking about topological invariants.
Klein distinguished different geometries by the theorems that stayed true under
the action of the respective transformation groups.

The habit of looking for invariants comes into play in another context: Invariance
can be used to show that a given construction produces a well-defined function. The
theorem about the “power of a point” is one of these: Define a function on R2 by
drawing a line from a point P that intersects a circle O in two points A and B (A

8REF???
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and B might be the same). Then the value of the function at P is defined as the
product PA × PB. The theorem is that this function is well-defined: It doesn’t
matter what line you draw through P .

One last thing about geometers:

Geometers love shapes. There is absolutely nothing to say here beyond what
Marjorie Senechal says in her beautiful piece Shape in “On the Shoulders of Giants.”
In that article, Senechal breaks the study of shape into four broad categories. In
addition to visualization, these include:

• Classification. Geometers classify shapes by congruence and similarity, by
combinatorial properties (numbers of vertices or edges, for example), and
by topological properties (number of “holes,” for example).

• Analysis. Tools used to analyze shapes include symmetry (including self-
similarity), regularity (tiling and packing properties), dissection, and com-
binatorics.

• Representation. Representations include models, drawings, computer graph-
ics, maps, and projections.

Just look in a book or paper written by a geometer (Senechal or Coxeter, for
example). There are pictures.

Algebraic approaches to things

In late 1993, the U.S. Department of Education Office of Research sponsored
a colloquium as a first step in a major effort, the Algebra Initiative, that will
rethink the importance of algebra and algebraic thinking from kindergarten through
graduate school. The charge for the colloquium begins with motto: “Algebra is the
language of mathematics.”

Algebra is a language for expressing mathematical ideas (there are certainly
others), and, like any language, it consists of much more than a way to represent
objects with symbols. There are algebraic habits of mind that center around ways
to transform the symbols. For algebraists, the images of these transformations
are so strong and pervasive that the symbols take on a life of their own, until
they become objects that exist as tools for informing one about the nature of the
transformations.

People who are in “algebra mode” use a special collection of habits of mind:

Algebraists like a good calculation. Underneath it all, algebra is the study of
sets equipped with one or more binary operations. The spirit of algebra is the study
of how to reason about the behavior of these binary operations. A set equipped
with binary operations is a system in which one can calculate, and algebra asks
the question, “What are the rules for calculating in this system?” The calculations
can be with numbers, abstract symbols, functions, propositions, permutations, even
calculations. Sometimes the calculations are just for fun, as in the famous:




1
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+
1
y2

1
x2

− 1
y2

−
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+
1
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
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But most often the calculations are for a purpose.
For example, Marvin Freedman of Boston University tells the story of being

intrigued as a child with a puzzle that led to a card trick:

Take a deck of 13 cards in the same suit. Perform the following shuffle
to the deck: For each letter in the word “ONE,” move a card from
the top of the deck to the bottom (this moves 3 cards to the bottom).
Turn over the new top card and put it on the table. Then spell out the
word “TWO,” and, with each letter, move a card from the top to the
bottom of the deck (3 more cards go to the bottom). Put the new top
card face up on top of the first card on the table. Then spell out the
word “THREE,” and, with each letter, move a card from the top to the
bottom of the deck (5 cards go to the bottom). Put the new top card
face up on top of the pile on the table. Keep doing this until you can’t
anymore. What initial arrangement of the 13 cards will cause the pile
on the table to be in natural order (ace through King) when it is picked
up and turned over?

Marvin discovered that if he started with the cards in natural order, and if he kept
performing the shuffle to the pile on the table, then after 12 iterations, the pile
on the table was in natural order. That meant that if he arranged the cards by
performing the operation 11 times, then one more shuffle would put things right.

It took a few years before Marvin could understand the reason behind his trick;
in middle school, armed with a sense for algebraic thinking, he represented the
shuffle by a permutation T :

T =
(
A 2 3 . . . Q K
4 8 A . . . 5 10

)

and he drew a cycle graph:

This allowed him to conclude that T 12 = 1, (where 1 stands for the identity
permutation), so T 11 T = 1, showing that if T is performed to the image of T 11,
you’ll get the cards in order.

Of course, Marvin’s method is completely general in the sense that it can be used
to find the right pre-arrangement of cards for any shuffle. It’s about calculations,
not with numbers, but with objects invented for a specific purpose. But these card-
shuffle-like objects can be used in other situations (to describe the rigid motions
of a cube, for example), and, for a given deck-size, they can be gathered up into
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a set, composed, decomposed, inverted, and transformed. They thus take on an
existence of their own, forming a little (well, not so little – for a deck of 13 cards,
there are 13! of them) system (or structure) in which you can perform and reason
about calculations. The permutations become objects of study in their own right
and the calculations become calculations with permutations rather than with decks
of cards. This is a perfect example of the next habit:

Algebraists use abstraction. The word “abstract” has taken on negative con-
notations in the mathematics education community, where it is often used as an
opposite to “concrete” or even “simple” or “clear.” In algebra,9 abstraction is
a natural and powerful tool for expressing ideas and obtaining new insights and
results.

Because algebra is so tied up with calculations, the habit of abstraction in algebra
is often activated when an algebraist finds two systems calculating the same. For
example, the ordinary integers have many of the same arithmetic properties as
the arithmetic of polynomials (in one variable with rational coefficients). In both
systems, you can factor things into primes, you can perform division with remainder,
and you can find greatest common divisors. What’s more important is that the
algorithms for calculating these things are almost identical. That leads an algebraist
to invent a structure that captures the similarities.

Sometimes, it’s possible to abstract off some features of a situation on the basis
of one example. Suppose you were studying the behavior of the roots of x5−1 = 0.
One root of this equation is 1, and the fundamental theorem of algebra (along with
the factor theorem) implies that there are four other ones in the complex numbers.10

Suppose ζ is one of these. Then ζ5 = 1. Consider the complex number ζ2. Since
(ζ2)5 = (ζ5)2 = 12 = 1, ζ2 is another root of the equation. In fact, this argument
shows that any power of ζ is a root of the equation (because (ζn)5 = (ζ5)n = 1n =
1). How can this be? The equation x5 − 1 = 0 has at most 5 roots, and it looks
like we’ve produced infinitely many. Some powers of ζ must be the same. Well, it
turns out that the roots 1 = ζ0, ζ, ζ2, ζ3, and ζ4 are all different,11 and there
are 5 of them, so these first five powers are all of them. This means that any other
power, ζ247, for example, must be one of the five numbers 1, ζ, ζ2, ζ3, and ζ4

Which one? Well, since ζ5 = 1,

ζ247 = ζ245+2

= ζ245 × ζ2

= ζ5×49 × ζ2

=
(
ζ5

)49 × ζ2

= 149 × ζ2

= ζ2

9and in many other parts of mathematics
10In fact, Demoivre’s theorem allows you to write them down.
11If, for example, ζ4 = ζ3, then ζ3(ζ − 1) = 0, so either ζ = 0 (which it isn’t, because the fifth

power of 0 isn’t 1) or ζ = 1 (which it isn’t, because we picked it to be different from 1).
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so ζ247 = ζ2 To find any power of ζ, then, you can “ignore” multiples of 5 in the
exponent. So, we can confine our attention to the set

{
1, ζ, ζ2, ζ3, ζ4

}

Notice that if we multiply two elements from our set

{
1, ζ, ζ2, ζ3, ζ4

}

the product must be in the set (because the product of two powers of ζ is another
power of ζ, hence a root of x5 − 1 = 0, and our set consists of all such roots). For
example:

ζ2 · ζ4 = ζ6 = ζ1,

ζ3 · ζ4 = ζ7 = ζ2, and

ζ4 · ζ4 = ζ8 = ζ3

We now have a little “system” in which we can calculate. In fact, calculating simply
involves calculating with the exponents. And calculating with the exponents is
especially simple: to multiply two powers of ζ together, add the exponents, divide
this sum by 5 and take the remainder, and raise ζ to this power. Indeed, instead
of working with the actual powers of ζ, we can calculate with the five exponents:

{0, 1, 2, 3, 4}

The binary operation on these exponents isn’t usual addition or multiplication, it’s
a new thing, call it ⊕, where:

a⊕ b = the remainder you get when a + b is divided by 5

We are now working in an abstract system, and we can forget the fact that the
elements of our system stand for exponents of fifth roots of 1. We can calculate
away, making conjectures and verifying them (for example, every element has an
inverse under ⊕), we can add new features to our system (another binary operation,
say), and, if this abstraction proves worthwhile, apply our calculations to situations
quite remote from roots of unity. Of course, in this case it does prove worthwhile:
we have built the additive group in Z/5Z, an an object that comes up throughout
algebra.

Algebraists like algorithms. Algebra began as a search for algorithms for solv-
ing equations, and algebra has never lost its taste for finding recipes for solving
classes of problems. Algebraic algorithms come in all sorts. Some provide short-
cuts for calculations that could, in principle, be carried out. Others tell you about
properties of algebraic objects that would be quite difficult to determine without
the algorithms. Most have the characteristic that, if you’re not in on the process of
designing them, they seem quite astounding. On the other hand, for the designer
of an algorithm, the finished product is often the result of capturing the essence
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of extensive calculations. Here are some examples of how algorithms are used in
algebra and how algebraic algorithms are applied outside algebra:

• Sometimes algorithms are quite simple: to find a polynomial whose roots
are the reciprocals of the roots of a given polynomial, write the coefficients
in reverse order. So, 3x4 − 2x2 + 5x + 6 and 6x4 + 5x3 − 2x2 + 3 have
reciprocal roots.

• Many algorithms are inductively defined ; the rule that describes them out-
lines a recursive process. For example, if a and b are integers, there are
integers x and y so that xa + yb = gcd(a, b). How can you find x and y?
Well, x and y are clearly functions of a and b, so let’s call them x(a, b)
and y(a, b). Then these equations outline an algorithm for calculating their
values:

x(a, b) =
{

0 if a = 0
y(b mod a, a) − � b

a� · x(b mod a, a) otherwise

and

y(a, b) =
{

1 if a = 0
x(b mod a, a) otherwise

(Here, � b
a� means the integer quotient that you get when b is divided by a.)

Trying this our for particular a and b (say, a = 124 and b = 1028) shows
that these equations expand into a significant calculation.

• Given two polynomials, say f = 3x3 + 5x2 − 3x + 1 and g = x2 + 5x − 6,
here’s an algorithm for determining if they share a common root: Create a
matrix from the coefficients of f and g by writing down the coefficients of
f twice (because the degree of g is 2) and writing down the coefficients of
g three times (because the degree of f is 3), using the following pattern:




3 5 −3 1 0
0 3 5 −3 1
1 5 −6 0 0
0 1 5 −6 0
0 0 1 5 −6




Then the polynomials share a root if and only if the determinant of this
matrix is 0.

• Algorithms that involve algebraic calculations often apply outside algebra;
in many parts of mathematics, the algebra of ordinary polynomials can be
used as a technique for keeping track of information.

For example, a Simplex lock is a combination lock that shows up in
dormitories, hotels, and airports:



1

2

34

5

HABITS OF MIND 21

A combination consists of an ordered set of “pushes,” and each push is a
collection of buttons (one or more) that are pushed together. For example,
one combination might be “push 3 and 5 together, then push 1, 2, and 4
together” or “push 2, then push 3 and 4 together.” How many combinations
are there? What if the lock had n buttons? Here’s an algorithm for finding
out:

Consider the function ψ, a transformation defined on polynomials in one
variable x with, say, integer coefficients, according to the rule:

ψ(f(x)) = xf(x) + (x + 1)f(x + 1)

So, for example,

ψ(2x + 1) = x(2x + 1) + (x + 1)(2(x + 1) + 1)

= 4x2 + 6x + 3

The algorithm is simply

To find the number of combinations on an n-button lock, iterate
ψ n times, starting with the constant polynomial 1 and double
the constant term.

So, we can calculate like this:

ψ(1) = x · 1 + (x + 1) · 1 = 1 + 2x

ψ(1 + 2x) = 3 + 6x + 4x2

ψ(3 + 6x + 4x2) = 13 + 30x + 24x2 + 8x3

ψ(13 + 30x + 24x2 + 8x3) = 75 + 190x + 180x2 + 803x + 16x4

ψ(75 + 190x + 180x2 + 803x + 16x4) = 541 + 1470x + 1560x2 + 840x3 + 240x4 + 32x5

and so on. So, a lock with 2 buttons has 6 combinations (including
the “empty” combination), a lock with 3 buttons has 26, a four-button
lock has 150 combinations, and a five-button lock (the one Simplex sells)
has 1082.
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Algebraists break things into parts. A useful technique in algebra is to identify
the “building blocks” of a structure. Algebraists like “structure theorems” (or
“decomposition theorems”) that usually say something like “every object under
consideration is a combination of a collection of very simple objects.” The most
famous decomposition theorem is the fundamental theorem of arithmetic: every
integer except for 0, 1, and −1 can written (in essentially one way) as a product
of primes. Hence, with respect to the operation of multiplication, primes are the
building blocks for integers. The reason that structure theorems are so desirable
is that results about the building blocks can usually be extended to results about
more general objects. For example, knowing that, for a prime p and a non-negative
integer e, pe has e+ 1 positive factors yields a simple algorithm to find the number
of divisors for any positive integer.

Algebraists often devise decomposition theorems for classes of algebraic struc-
tures as well as for more atomic things (like integers). So, linear algebra is full of
ways to decompose a vector space into useful subspaces, and a basic result in group
theory shows how to decompose any finite commutative group into cyclic groups.

Another decomposition technique in algebra is to break a structure up into classes
with respect to some equivalence relation. In many cases, this is just an abstraction
mechanism for expressing similarities among various elements of a structure. For
example, when we were looking at how integers behave when they are exponents
for a fifth root of 1, we saw that two integers behave the same if they differ by
a multiple of 5. So, with respect to the situation at hand, the integers break up
into 5 classes, each class containing all the integers that leave the same remainder
when they are divided by 5. This has the effect of equating all multiples of 5 to 0,
all numbers of the form 5k + 1 to 1, and so on.12

Algebraists extend things. The calculations, algorithms, and decompositions
described above all take place in algebraic systems (sets of things that are equipped
with binary operations that allow you to calculate). New insights come when you
see how a calculation or theorem behaves when you put a given system inside a
larger one.

For example, the ordinary integers sit inside the Gaussian integers. How does
arithmetic change when you move from ordinary integers to Gaussian integers?
Well, there is still a fundamental theorem of arithmetic, but the collection of primes
is different. Some primes in the ordinary integers stay prime in the larger system (3,
for example), and some do not (5 = (2+ i)(2− i)). Right away, a question emerges:
Which integer primes stay prime in the Gaussian integers and which primes don’t?
It turns out that you can tell quite simply, using a test that only involves arithmetic
with ordinary integers: an odd prime stays prime if it leaves a remainder of 3 when
divided by 4, and an odd prime splits into two (Gaussian integer) prime factors if
it leaves a remainder of 1 when divided by 4. The integer 2 factors is a special way:
it is essentially the square of 1 + i: 2 = −i(1 + i)2. The fact that the behavior of a
prime integer in an extension of the ordinary integers is determined by information
that is already in the ordinary integers (in the example described here, how the
prime behaves with respect to 4) is a special case of one of the central theorems

12In many situations, algebraists use this mechanism to “get rid of” a troublesome element: If

7 is causing you trouble, work in the integers mod 7 instead of the ordinary integers.
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in a major branch of algebra (class field theory) that developed in the twentieth
century.

The habit of extending the system under consideration is used all over algebra.
Modern interpretations of the work of Galois in the theory of equations depend
heavily on the extension idea. Many of the flawed proofs of the Fermat conjecture
that have emerged over the years make a mistake in one way or another of assuming
that certain properties (like the fundamental theorem of arithmetic) remain true
under extension. In pre-college algebra, students are asked several times to enlarge
the number systems in which they calculate, starting with the natural numbers in
elementary school and ending with the complex numbers in high school.

Algebraists represent things. There are formal mathematical definitions of rep-
resentations, in which the elements of one algebraic sturcture correspond to certain
functions on another, but we adopt a broader and more informal use of the word
here. Essentially, the idea is to use a well-understood structure to study a less
well known one or to set up an interplay between seemingly different structures
that proves fruitful in the study of both. Linear Algebra abounds with examples of
such representations. One of the most important for beginning students often goes
unmentioned in many courses: the representing of points on the plane (or in space)
with ordered pairs (triples) of real numbers. These bijections between the plane
and R2 and between three dimensional space and R3 are two of the most profound
in all of mathematics. Their study is begun in analytic geometry. The contribution
of Linear Algebra is to equip R2 and R3 with the structures of vector spaces (so that
the elements can be added and scaled), giving an algebraic perspective to ordinary
Euclidean geometry.

There are many other examples of representations in algebra. The representation
of linear transformations on Euclidean space by matrices (so that the sum and
composition of the transformations correspond the the sum and matrix product of
the associated transformations) is one of the biggest contributions linear algebra
has made to modern mathematics. In group theory, for example, mathematicians
from Frobenius to Gorenstein have used matrix representations of finite groups as
a basic research technique.

Why habits of mind?

The mathematics developed in this century will be the basis for the technological
and scientific innovations developed in the next one. The thought processes, the
ways of looking at things, the habits of mind used by mathematicians, computer
scientists, and scientists will be mirrored in systems that will influence almost every
aspect of our daily lives.

If we really want to empower our students for life after school, we need to prepare
them to be able to use, understand, control, and modify a class of technology that
doesn’t yet exist. That means we have to help them develop genuinely mathematical
ways of thinking. In this paper, we’ve tried to describe some of these mental habits.
Our curriculum development efforts will attempt to provide students with the kinds
of experiences that will help develop these habits and put them into practice.
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