

Developing Multiplicative Thinking

Extending Multiplication and Division to Multi-Digit Factors with Belle Rush

Welcome!

Your host:

Belle Rush

Regional Consultant Kentucky Center for Mathematics bsrush180@yahoo.com

KCM Website

www.kentuckymathematics.org

Search

HOME

PROFESSIONAL MAF LEARNING+

RESO

RESOURCES -

ANNUAL CONFERENCE -

ABOUT US-

Good News!

The KCM is hard at work to ensure Kentucky teachers have access to innovative professional development from home.

Through the newly launched <u>KCM Virtual</u> site, mathematics teachers from all grade levels will have access to live zoom meetings, video records and corresponding materials. <u>Read more</u>.

Focus on Fractions - May 4 - May 8

Focus on Geometry - May 11 - May 15

More Multiplicative Thinking - May 18 - May 22

Today's Agenda

Research
Standards
Getting there

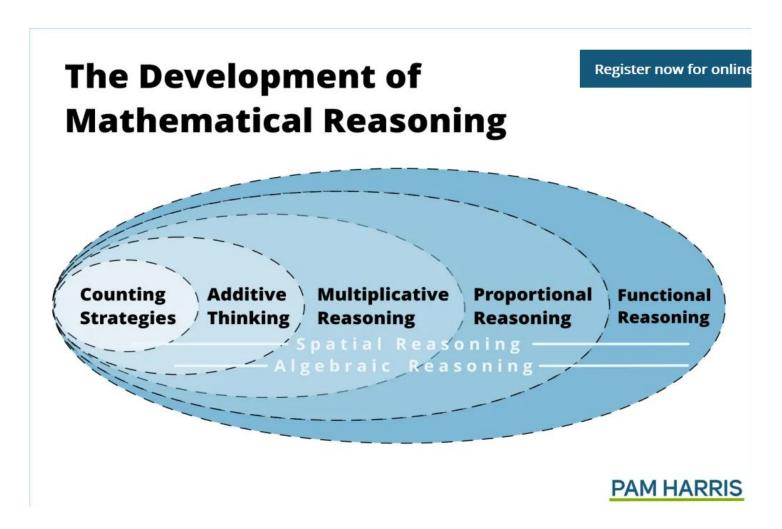
- Strategies for Multiplication
- Strategies for Division

Consider this...

Most of us learned to add whole numbers by lining numbers up vertically and adding each column, carrying/borrowing when necessary. But did we understand why it worked? It's most likely that the "how" of doing the computation was "drilled" into our heads, but the "why" was lost.

"Knowledge not supported by understanding is fragile!"

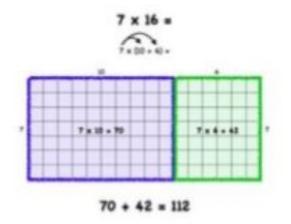
Keep in mind...

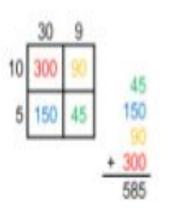

The standard algorithm is not a bad thing; it has been in use for years and, when used correctly, works every time.

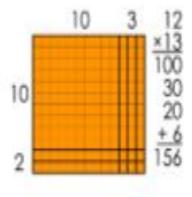
Although the standard algorithm is often introduced and used in primary grades, the expectation (Kentucky Academic Standards) is that students not formally use the an algorithm for addition and subtraction until grade 4, and multiplication and division until grade 5. Why do you think that is the case?

Research from Pamela Weber Harris

https://www.mathisfigureoutable.com/development/

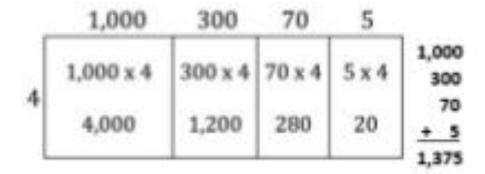



What do the standards say?


KY.4.NBT.5 Multiply whole numbers

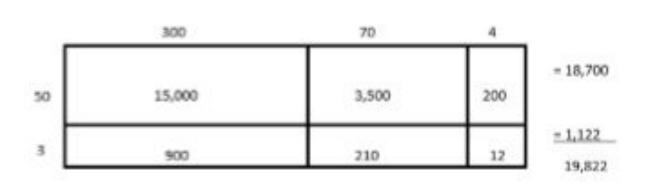
- Up to four digit number by a one-digit number
- Two-digit number by two-digit number

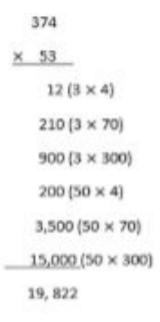
Multiply using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays and/or area models.



What the standards say?

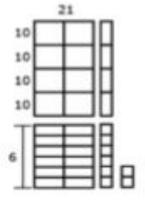
KY.4.NBT.6 Divide up to four-digit dividends by one-digit divisors. Find whole number quotients and remainders using


- strategies based on place value
- the properties of operations
- the relationship between multiplication and division Illustrate and explain the calculation by using equations, rectangular arrays and/or area models.



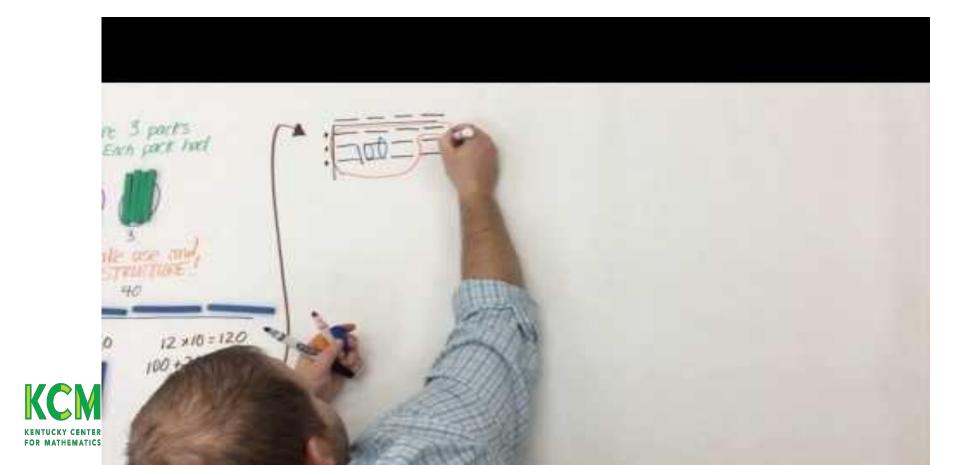
What do the standards say?

KY.5.NBT.5 Fluently multiply multi-digit whole numbers (not to exceed four-digit by two-digit multiplication) using an algorithm.



What do the standards say

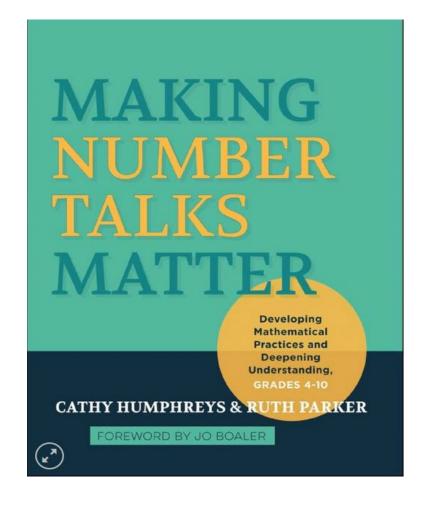
KY.5.NBT.6 Divide up to four-digit dividends by two-digit divisors.


- a. Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors using...
 - strategies based on place value
 - the properties of operations
 - the relationship between multiplication and division
 - b. Illustrate and explain the calculation by using equations, rectangular arrays and/or area models.

The Progression of Multiplication

The Progression of Multiplication HD

Three Act Tasks


Sugar Packets

Four Strategies for Multiplication

- Break a factor into addends
- Factor a factor
- Round a factor and adjust
- Halving and doubling

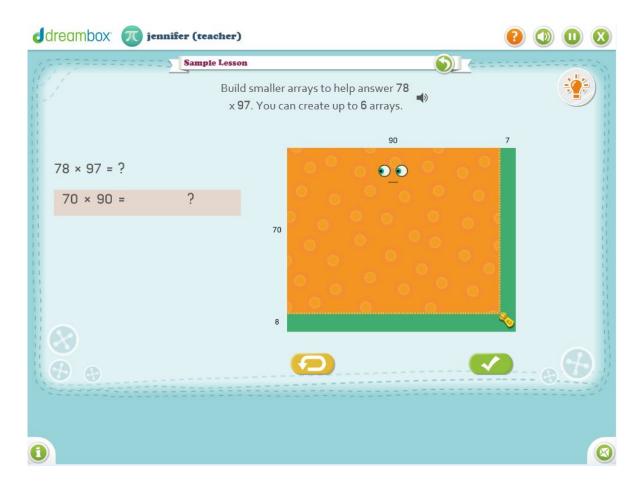
Break a Factor into two or more addends

$$12 \times 16$$

$$12 \times 16 = 12 \times (10+6)$$

$$= (10+6) \times 12$$

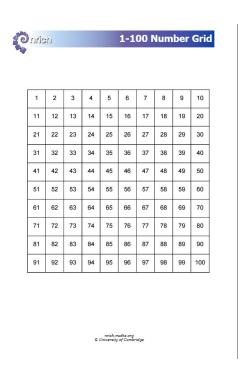
$$10 \times 12 = 120$$


$$6 \times 12 = 72$$

$$192$$

Dreambox Teacher Tools

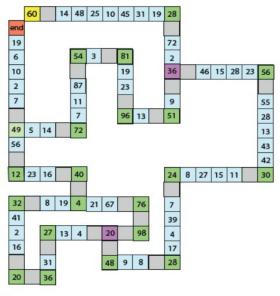
https://www.dreambox.com/teachertools



Factors and Multiples Game

Factors and Multiples Game

Factor a factor


$$12 \times 16$$

 $12 \times 16 = 12 \times (4 \times 2 \times 2)$
 $12 \times 4 = 48$
 $\times 2$
 $96 \times 2 = 192$

Factor Track

Factor Track

Rules:

You can move any factor, except 1, of the number you are on.

You start on the [yellow] 60 and make your way round to the [red] 'end' square.

You may not go round corners so you must get exactly to a green square.

http://nrich.maths.org/7468 © University of Cambridge

Round a factor and adjust

$$12 \times 16^{\circ \circ} \cdot \epsilon_{16=20-4}$$

 $12 \times 20 = 240$
 $12 \times 4 = 48 < +8$
 $240-40 = 200$
 $200-8 = 192$

Multiplication Race

Multiplication Race

Multiplication Race

Materials: game board, number cube, one counter for each player, calculator

- 1. Each player places a counter on the box marked 'Start'.
- Take turns to roll a number cube and move forward that number of spaces along the path. Solve the multiplication problem you land on <u>or</u> follow the instruction you land on.
- 3. Partners use a calculator to check each other's work. A player who gives an incorrect product must miss a turn.
- 4. Continue until one player reaches the box marked 'End'.

Extension: Create your own Multiplication Race board and try it out with a partner.

@K-5MathTeachingResources.com

2 x 3 digit

Multiplication Race

						1	
Go back 5	83 x 764	94 x 653	Roll again		End		Start
72 x 654			25 x 348		25 x 292		13 x 121
69 x 763		Miss a turn	36 x 896		Go back 8		21 x 242
58 x 982		47 x 358			94 x 695		34 x 615
47 x 884		58 x 312			83 x 772		45 x 672
35 x 653		Go back 5	69 x 467	72 x 563	Roll again		56 x 511
Go back 4	1						Go back 3
24 x 574	13 x 709	Roll again	92 x 772	89 x 346	Miss a turn	78 x 524	67 x 494

2 x 3 digit

Halving and doubling

$$12 \times 16$$

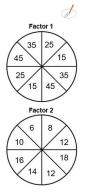
 $12 \times 16 = 24 \times 8$
 $= 48 \times 4$
 $= 96 \times 2$
 $= 192$

Double and Halve

Double and Halve

Double and Halve

Materials: 10 counters per player, 2 paper clips, 2 pencils, Double and Halve board



- 1. Work with a partner. Collect 10 counters each.
- Take turns to spin a paper clip on each spinner. Use the two numbers the paper clips land on to create a multiplication problem.
- Double one factor and halve the other to change the problem to one with an equivalent product that is easy to solve mentally. Explain your strategy.
- Place a counter on the multiplication fact on the board. If the multiplication fact is already covered play passes to the next player.
- Continue playing until one player has placed all ten counters on the board.

CK-5MathTeachingResources.com

Double and Halve

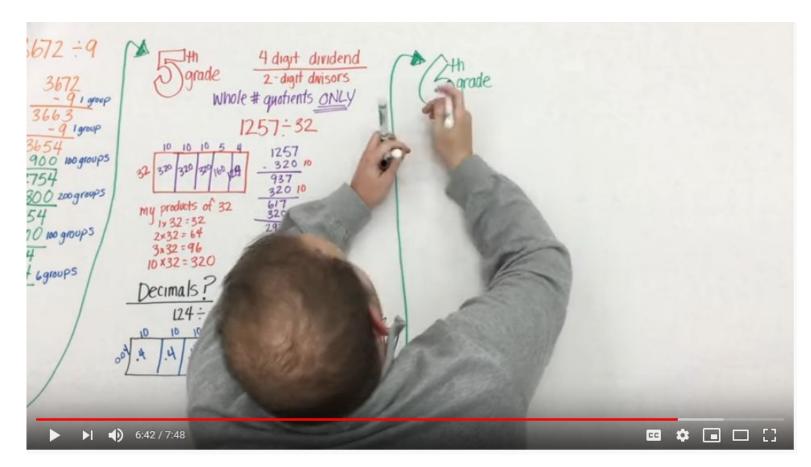
30 x 3	50 x 3	70 x 3	90 x 3
30 x 4	50 x 4	70 x 4	90 x 4
30 x 5	50 x 5	70 x 5	90 x 5
30 x 6	50 x 6	70 x 6	90 x 6
30 x 7	50 x 7	70 x 7	90 x 7
30 x 8	50 x 8	70 x 8	90 x 8
30 x 9	50 x 9	70 x 9	90 x 9

I know that the product of __ multiplied by __ is equivalent to the product of __ multiplied by __. The answer to both problems is __.

To solve ___ times ___ I doubled __ and halved __ to change the problem to ___ times ___ . The product is ___ .

I know that the product of ___ multiplied by ___ is equivalent to the product of ___ multiplied by ___. The answer to both problems is ___.

To solve ___ times ___ I doubled __ and halved __ to change the problem to ___ times ___ . The product is ___ .


GK-5MathTeachingRx

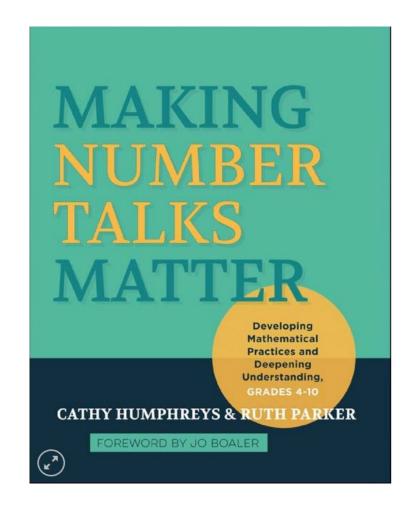
©K-5MathTeachingResources.com

Progression of Division


The Progression of Division HD

Strategies for Division

- Multiply instead
- Chunk out
- Make a tower
- Halving and halving

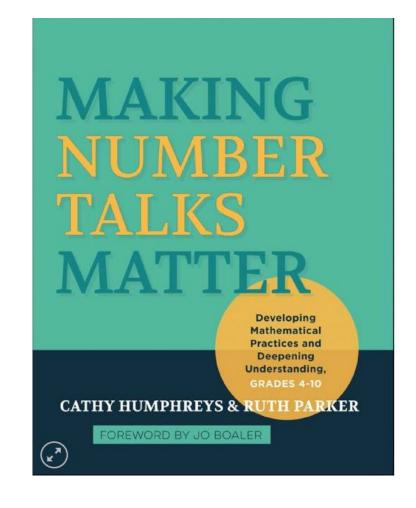

Strategies for Division

"...when computers and calculators truly come of age in the schools, paper and pencil long division will probably be 'as dead as a dodo bird'".

Richard Anderson

"...there is no longer a job in the world--not one single job--where someone does long division with paper and pencil; not one job, that is, other than teaching,"

FOR MATHEMATICS



Maier 1982

Strategies for Division

Through Number Talks, students can make sense of division (the operation--not the standard algorithm)--and, by maintaining a focus on the relationships between quantities, learn how to size up a problem to determine a reasonable "ballpark" answer.

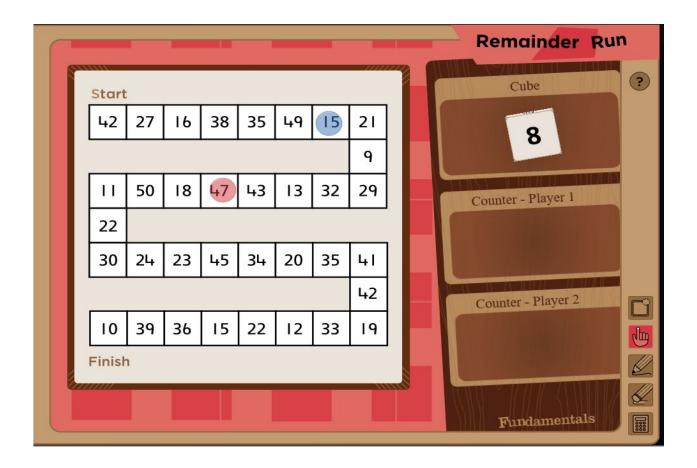
Cathy Humphreys and Ruth Parker

Multiply instead

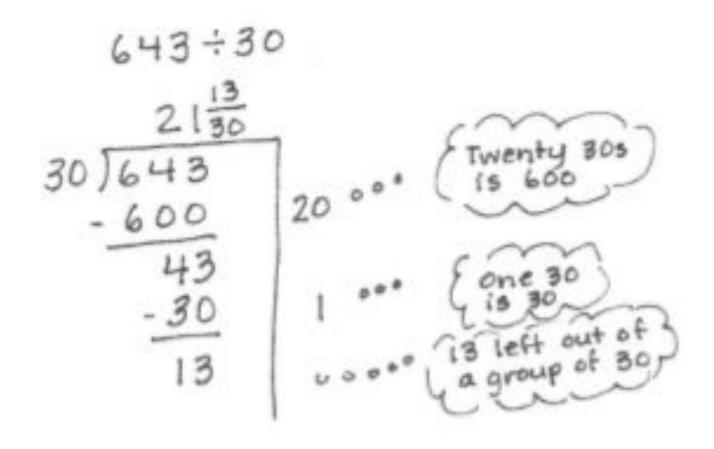
17/3

"I know 3 times 5 is 15, so I have 5 groups of 3; then I have 2 left, so remainder of 2.

Origo at Home


Each of the weeks below provides five daily activities organized around a specific math topic. To help establish a rhythm for learning at home, each day of the week has a focus:

- Monday Read and Discuss (Grades K-2) or Watch and Talk (Grades 3-5)
- Tuesday Hands-on Math
- Wednesday Problem-solving
- Thursday Game Day (digital practice)
- Friday Practice


Origo at Home

ORIGO at Home - Interactive Digital K-6 Math plans & resouces for home

Chunk out

Chunk it out/ Partition the Dividend

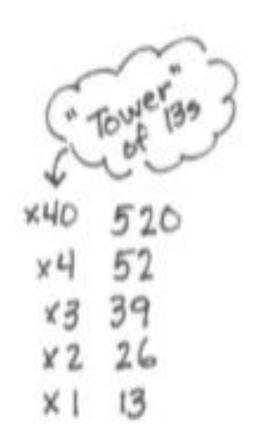
Division Strategy: Partition the Dividend

Division Strategy: Partition the Dividend

Materials: Division Equations Board

- Work with a partner. Choose a line of four problems from the board (vertically, horizontally or diagonally) that you will both solve.
- Solve each problem by breaking the dividend into parts that are easy to divide. Solve the easier problems and then add the partial quotients.

Example:
$$72 \\ \downarrow \\ 50+22 \\ (\div 5)$$
 or $\frac{10+4}{5)50+22}$ = 14 R2 $\frac{10+4}{5}$ R2 = 14 R2 $\frac{10+4}{5}$ R2 = 14 R2


3. Check your work with your partner. Then repeat with another line of four problem

©K-5MathTeachingResource

101 ÷ 9	91 ÷ 7	104 ÷ 8	125 ÷ 5
64 ÷ 4	58 ÷ 4	48 ÷ 3	79 ÷ 6
73 ÷ 6	97 ÷ 8	67 ÷ 5	41 ÷ 3
49 ÷ 3	120 ÷ 9	72 ÷ 5	84 ÷ 6

Make a tower

Dreambox Teacher Tools

https://www.dreambox.com/teachertools

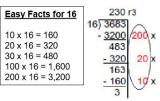
Partial Quotients

https://www.k-5mathteachingresources.com/support-files/division_n-strategy-partial-quotients-ver.3.pdf

Division Strategy: Partial Quotients

Materials: Division equations boards

 Work with a partner. Choose a line of four problems from the board (horizontally, vertically or diagonally) that you will both solve using the partial quotients algorithm.

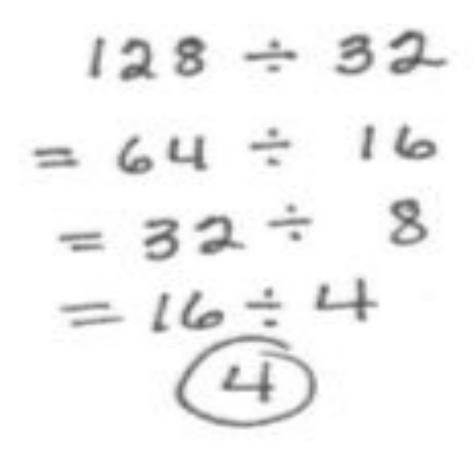

Step 1: Write a list of easy facts for the divisor.

Step 2: Subtract from the dividend an easy multiple of the divisor (e.g. x 10, x 100, x 200 etc.) Record the partial quotient in a column to the right of the problem.

Step 3: Repeat until the dividend has been reduced to zero, or the remainder is less than the divisor.

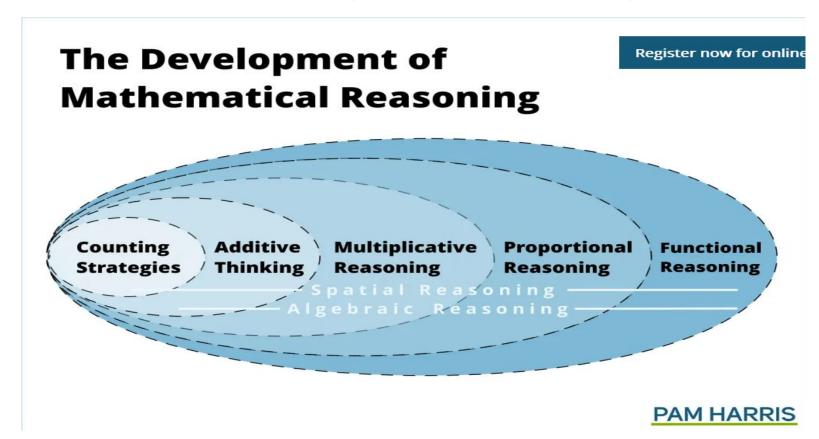
Step 4: Add the partial quotients to find the final quotient.

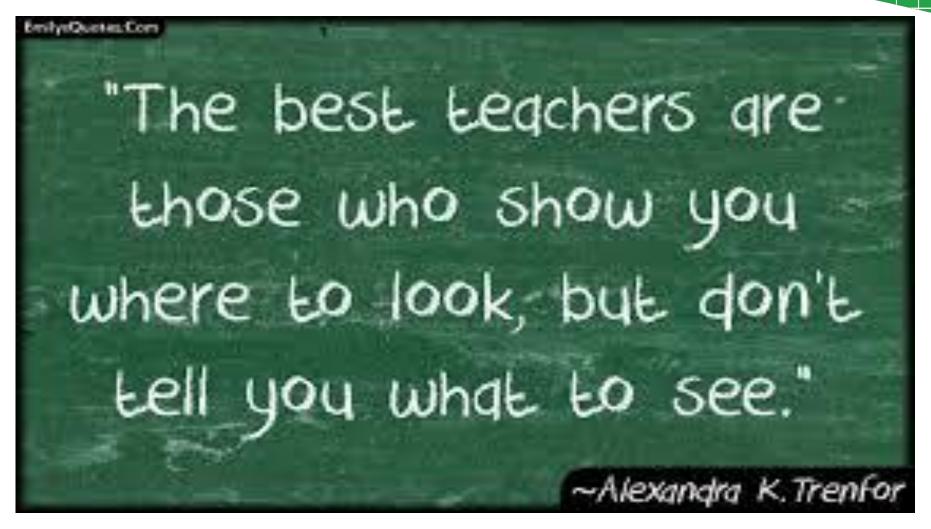
Example: 3,863 ÷ 16



- 3. Check your work with your partner.
- 4. Repeat with another line of four problems.

3,292 ÷ 16 =	3,624 ÷ 17 =	3,155 ÷ 15 =	2,929 ÷ 14 =
6,835 ÷ 17 =	3,973 ÷ 13 =	4,836 ÷ 16 =	3,919 ÷ 19 =
4,591 ÷ 15 =	4,834 ÷ 16 =	3,828 ÷ 19 =	4,580 ÷ 15 =
4,984 ÷ 16 =	3,463 ÷ 34 =	1,831 ÷ 16 =	3,768 ÷ 18 =


Halving and halving



All of these strategies are useful with any numbers, including fractions, decimals, and negative numbers!

These strategies help students make use of properties of operations, which leads to algebraic understanding.

We are here to support our teachers!

Your host:

Belle Rush

Regional Consultant Kentucky Center for Mathematics bsrush180@yahoo.com

