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Putting Technology  
in Its Place

Using four mathematical tasks as models, the authors discuss how carefully designed tasks  
and orchestrated discussions can reveal and shape students’ mathematical practices.

Jason Knight Belnap and Amy Parrott

Should calculators and other technology be allowed 
in the mathematics classroom? Such questions have 
initiated a lot of debate, just because of the abundance 
of sophisticated technology. Many calculators and soft-
ware programs can quickly and accurately perform the 
mathematical computations, procedures, and algo-
rithms that comprise traditional K–12 mathematics 
content, including, but not limited to, graphing equa-
tions and multivariable functions, factoring polynomi-
als (of even a wider range than taught in any algebra 
course), simplifying expressions, performing geometric 

constructions, computing derivatives, performing defi-
nite and indefinite integrals, and solving systems of 
equations. Consequently, some teachers forbid the use 
of technology, being concerned that it will displace 
mathematics learning by circumventing the learning of 
these skills, computations, and procedures. Others have 
embraced its potential to entertain students or capture 
their interest—being used, perhaps, with little benefit 
for student understanding and development.

What is effective use of technology? We assert that 
technology is used effectively when it enables students 
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because doing so can influence which mathematical 
practices students employ, how they engage in those 
practices, and the mathematical knowledge and ideas 
they develop and access.

CONSIDERING MULTIPLE EXAMPLES  
BEFORE GENERALIZING 
Mathematics is the study of abstract ideas, ideal objects, 
and their relationships. Most mathematical concepts 
did not originate as abstract ideas but were abstracted 
from work with concrete problems and representations. 
Professional mathematicians and expert problem solv-
ers know that understanding and insights are often hard-
earned and come by generating, organizing, and studying 
many examples. Because of this, experts often hold off on 
generalizing and conjecturing, seeking first to understand 
through experience, exploration, and experimentation; 
they consider multiple examples before generalizing.

Relevant to many algebra courses, task 1 affords stu-
dents an opportunity to explore graphical transformations 
(e.g., shifts, compressions, and reflections) resulting from 
alterations to a function’s defining equation. Graphing 
technology, such as graphing calculators or software like 

to engage in authentic mathematical activity. The most 
powerful and transferable aspects of mathematics 
are not its procedures, processes, and algorithms but 
rather the mathematical practices that give rise to them. 
These practices include the values, habits of mind, and 
ways of knowing that enable mathematicians to solve 
new problems, devise new strategies, and establish 
their validity. These include, but are not limited to, the 
eight Standards for Mathematical Practice (SMP) of the 
Common Core State Standards (NGA Center and CCSSO 
2010) and the five Process Standards of the National 
Council of Teachers of Mathematics (NCTM 2000). 
Technology is used effectively in the classroom when it 
enables students to engage in such practices, when it is 
the means to an end, serving as a catalyst or scaffold for 
mathematical activity rather than being the goal itself 
(Boaler 2016). This can be done by selecting or choos-
ing mathematical tasks that necessitate the use of par-
ticular mathematical practices, practices that might be 
inaccessible without technology. 

In this article, we discuss how technology, in con-
junction with carefully designed tasks and orchestrated 
discussions, has the potential to both reveal our stu-
dents’ mathematical practices and to provide opportu-
nities to shape those practices. View video 1 for a short 
introduction about our methods. We examine four spe-
cific mathematical practices that tend to be associated 
with problem-solving situations, namely—

1.	 considering multiple examples before 
generalizing;

2.	 seeking out diverse or extreme examples;
3.	 looking systematically at cases; and
4.	 attending to definitions.

For each of these practices, we give an example 
of a task and suitable technology and discuss ways of 
facilitating the development of the practice. Online 
applets have been created to illustrate for the reader 
what students might create or see while exploring each 
task. Whether to provide applets like these to students 
warrants serious pedagogical thought and planning 
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Video 1 	�Methods of Using Technology

Watch the full video online.

https://pubs.nctm.org/view/journals/mtlt/113/2/article-p140.xml?tab_body=Video
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Desmos (https://www.desmos.com/calculator
/vkt0tihuea) or GeoGebra (https://ggbm.at/zyh6uxav), 
provides students with a way of creating accurate graphs 
quickly, removing the time-consuming graphing process 
this might look like. This enables students to consider 
many examples, which is essential for the pattern 
recognition and generalization needed for this task.

Considering multiple examples is critical to this task 
because doing so acts as a window into students’ gener-
alization tendencies. Students who have not developed 
the propensity to consider multiple cases tend to give 
up or generalize from only one or two examples. For 
instance, they use a few simple integers for c, such as 1, 
2, 3, resulting in overly simplistic, incorrect, or unclear 
relationships within the task.

Activities like this also aff ord teachers opportunities 
to foster student acquisition of this practice by encour-
aging persistence, example generation, and refl ec-
tion on those examples. During student exploration, 

example generation can be encouraged using such 
questions as these:

• What examples have you tried so far?
• How do your examples compare or diff er?
• How can you change the graphs?

Persistence and a healthy skepticism are promoted 
by asking such questions as these:

• How do you know it always works?
• Did you consider other examples?

Teachers can also encourage students to create a 
paper trail of their examples, allowing students to com-
pare and contrast the results.

Refl ective discussion about students’ mathematical 
practices will provide further encouragement. Teachers 
can have students share their examples by asking, 
“What did you do to come up with that conjecture?” 
They can then shift  the focus of the class to the con-
sideration of multiple examples by asking, “Why was 
it important for us to look at several examples? What 
might we have missed if we had not done so?” Such 
overt discussion about investigating multiple examples 
can help students become aware of this strategy and 
develop the disposition to avoid overgeneralizing. 

SEEKING OUT DIVERSE OR EXTREME EXAMPLES
Many mathematical ideas arise only by studying a 
diverse set of examples. Mathematicians recognize (but 
students may not) that objects defi ned by some com-
mon properties may not share all properties (Belnap 
and Parrott 2013). Failing to explore diversity during 
inductive work can result in incorrect generalizations, 
assumptions, or abstracted properties. Although many 
textbooks and teachers intentionally model this practice 
by presenting diverse examples, because it can be sub-
tle, students might not recognize and incorporate this 
practice without explicit intervention (Alcock 2004).

Task 2 provides students with a particularly chal-
lenging situation, namely, exploring the defi nition 
of an unconventional angle bisector quadrilateral 
(ABQ). Students must exercise their creativity and 
problem-solving skills to both understand the defi nition 
and to uncover these quadrilaterals’ properties. Robust 
geometry environments (e.g., Geometer’s Sketchpad® 
or GeoGebra) allow students to construct and manipu-
late dynamic models of the objects. These models enable 

Task 1  Exploring Transformation 
of Functions

Consider the function

Will your conjectures be true for all functions? 
Why or why not?

How do the graphs of each of these modifi ed 
versions of the function
How do the graphs of each of these modifi ed 

compare with the 
original? Make some conjectures about their 
relationships to the graph of 
original? Make some conjectures about their 

:
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students might observe that the angle bisector quadrilat-
eral Aʹ Bʹ Cʹ Dʹ of quadrilateral ABCD—

• has an orientation opposite that of quadrilateral 
ABCD (see cases 1 and 4 in fi gure 1);

• is degenerate (a single point) if quadrilateral 
ABCD has refl ectional symmetry along a diagonal 
(i.e., it is a kite) or can have a circle inscribed in it 
(see cases 2 and 3 in fi gure 1); and

• is a square if and only if quadrilateral ABCD is a 
nonsquare rectangle (see case 4 in fi gure 1.).

Teachers can encourage working with diverse exam-
ples by addressing students’ motivation, lateral thinking, 
and discipline-based observational skills. First, students 
must develop the propensity to consider and search for 
extreme cases. Teachers can motivate this practice by 
fostering a healthy skepticism toward observations by 
treating students’ unjustifi ed answers as conjectures, 
challenging (rather than sanctioning) them, and propos-
ing false solutions. For example, aft er writing students’ 
ideas on the board, you might say, “These are interest-
ing conjectures. Can you fi nd a counterexample to any of 
them? Have you looked at any unusual or diff erent quad-
rilaterals, like parallelograms, concave quadrilaterals, 
or trapezoids?” (See fi gure 2.) Also, instead of affi  rming 
solutions, play devil’s advocate by making such com-
ments as, “I have another solution I want you to consider: 
I think that every ABQ is a rhombus. Do you believe my 
statement? Why or why not?” Aft er students have had 
time to explore, then ask, “Which conjectures do you still 
believe are true? Does anyone have any counterexamples 

students to observe real-time changes in the object’s 
properties and uncover covariational relationships. 
Students can also uncover extreme and unforeseen 
cases, such as when the resulting quadrilateral degener-
ates to a point.

Seeking out unlike or extreme examples is important 
to this task because of the diversity of objects and math-
ematical situations this defi nition encompasses—one 
such construction can be seen at https://www.geogebra 
.org/geometry/nxmhwb9p (see fi gure 1). For example, 

These additional extreme examples might arise from task 2.

Fig. 2

These examples show diverse and extreme cases that might arise 
during task 2.

Fig. 1

Task 2  Exploring Angle Bisector 
Quadrilaterals

Consider a generic quadrilateral ABCD. The 
angle bisector quadrilateral of ABCD is a 
quadrilateral AʹBʹCʹDʹ, where Aʹ, Bʹ, Cʹ, and Dʹ
are each the intersection of the angle bisectors 
of the corresponding and subsequent vertices 
(e.g., Aʹ is the intersection of the bisectors of 
∠DAB and ∠ABC). Your task is to explore the 
relationships between these two quadrilaterals 
and make several conjectures on the basis of 
your observations.

https://pubs.nctm.org/view/journals/mtlt/113/2/article-p140.xml?tab_body=Geogebra
https://pubs.nctm.org/view/journals/mtlt/113/2/article-p140.xml?tab_body=Geogebra
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to share?” Then have students share counterexamples or 
ask them, “Why do you believe that conjecture to be true? 
Let’s try to prove it. What would we need to show?” 

Second, students must develop an ability to diversify 
their thinking. Many students have an unconscious 
tendency toward homogenous, aesthetically pleasing, 
and simplistic examples. Often students’ “random” 
creations have very nice properties; it takes conscious 
effort to find unusual and extreme cases. Teachers can 
make the search for diversity and radical examples the 
explicit goal of classroom activity. When introducing an 
object through definition, have students concoct a set of 
three or four examples of the object, each different from 
the others in some fundamental way. Students take turns 
adding examples to the board, each time explaining how 
their example meets the definition yet is different from 
those already given. For example, with the ABQ defini-
tion, students might show examples like those in figures 
1 and 2. Students begin to see ways that objects can differ 
without losing their defining properties.

Third, students must learn to recognize extreme, 
unusual, or interesting situations when they encounter 
them. Some students tend to overlook diversity, not 
recognizing special cases or circumstances, even when 
they see them occur (Belnap and Parrott 2013). This 
ability may be more of an art, developed subtly from 
experiences. If so, students need to see, share, and 
discuss extreme situations, broadening their ideas 
about what interesting or unusual circumstances might 
arise. Students also need encounters when things go 
wrong—seeing conjectures or definitions fail and 
apparent patterns break down. 

LOOKING SYSTEMATICALLY AT CASES
Mathematical work is rarely random in nature. 
Organizing, systematizing, and examining cases are 
powerful and can be rewarding mathematical prac-
tices. Through them, mathematicians are able to 
strategically and intentionally search out deep and 
complex mathematical relationships from failed or 
inconclusive situations. In this way, mathematicians 
look for and make use of structure (SMP 7) so to create 
and reveal patterns, uncover special situations, and 
build understanding.

 Situated in the congruence theorems of Euclidean 
geometry, task 3 provides an opportunity for students to 
investigate the complexity behind why the side-side-an-
gle (SSA) relationship fails to guarantee triangle congru-
ence. Because there is no guarantee that SSA will result 

in congruence, students must find ways to systemati-
cally explore and break down the situation into different 
cases, some of which do and some of which do not guar-
antee congruence. Dynamic geometry environments 
(e.g., GeoGebra or Sketchpad) help by providing precise, 
visual, and dynamic models that can be manipulated 
in various ways. Students can search for and test (both 
visually and through targeted constructions) such cases. 
(See https://www.geogebra.org/classic/pvqdmhbt for an 
applet that allows students to explore adjusting the angle 
and sides of their triangles.) 

The tendency to organize one’s investigation can 
be powerful for this task because a variety of pos-
sible conjectures exist, each with different condi-
tions, which can be uncovered through systematic 
approaches. Students who do not systematically con-
sider cases may struggle significantly with this task, 
often finding only a single conjecture. 

Teachers can help students develop this practice by 
creating and discussing situations in which examining 
cases is important or useful, such as when something 
different occurs, or there is a need to simplify situa-
tions. Teachers can ask questions to encourage organi-
zation or systematic approaches:

•	 Did you try different types of triangles?
•	 How might you organize all of these examples 

that you have?

Task 3	 ��Side-Side-Angle Uniqueness

Side-side-angle is not a congruence theorem 
because it does not work in all cases.

1.	 Give an example of two triangles that satisfy 
the side-side-angle relationship but are not 
congruent. (A picture is sufficient here.)

2.	 In certain situations, side-side-angle will yield 
two congruent triangles. Spend 10 to 15 min-
utes experimenting with various triangles. 
Write some conjectures describing conditions 
under which SSA will guarantee that the two 
triangles are congruent. Give some examples 
to support your conjectures.

https://pubs.nctm.org/view/journals/mtlt/113/2/article-p140.xml?tab_body=Geogebra
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•	 What happens if you just change one of the three 
measurements? 

Discussion around these questions might lead to a 
chart, such as in table 1.

Teachers can encourage different organizational 
schemes (see table 1) and the systematic exploration of 
each case. Debriefing can focus on similarities between 
the cases and ways in which the cases may be condensed. 
To encourage the practice, students should share, com-
pare, and discuss how they systematically approached the 
problem and the ways that they organized their work. 

UNPACKING MATHEMATICAL DEFINITIONS
Definitions are important and powerful mathe-
matical tools; they provide precise conditions for 
classifying objects, which empowers us to make math-
ematical arguments and communicate effectively. 
Mathematicians understand that to attain this preci-
sion, definitions are written in a condensed, compact, 
and concise manner. Consequently, developing an 
understanding of and intuition about what is defined 
(i.e., unpacking the definition) requires inductive work 
and exploration, such as generating, comparing, and 
contrasting examples and nonexamples.

Within the context of descriptive statistics, task 4 
gives students an opportunity to unpack the mathemati-
cal definitions of mean, median, and mean absolute devia-
tion (MAD) by requiring students to coordinate statistics 
and data set creation. By removing cumbersome com-
putations from students’ cognitive load, technology like 
calculators and spreadsheets can allow students to focus 
on experimentation and observation, for example, see 
https://ggbm.at/tqqnwr9m. Students are then free to focus 

on how changes in the underlying data set affect these 
statistics, thereby helping them develop an understanding 
of what they measure, how to interpret them, how they 
relate to a data distribution, and what their biases are. 

Unpacking mathematical definitions is criti-
cal to this task (and task 2, Exploring Angle Bisector 
Quadrilaterals) because it requires students to dig 
deeper into the underlying ideas that are captured by 
the definitions but not explicitly stated. For exam-
ple, although mean, median, and MAD are typically 
defined as formulas on a data set, which are proce-
dural in nature for students, the questions posed can-
not be addressed or answered by simple calculation. 
Students must develop an understanding of the attri-
bute that each statistic measures by learning how the 
data set produces the specific statistic. Limiting the 

Angle (∠∠A)

Sides ∠∠A is acute ∠A is right ∠A is obtuse

Side adjacent to ∠A is shorter than 
the side opposite of ∠A

Side adjacent to ∠A is congruent to 
the side opposite of ∠A

Side adjacent to ∠A is longer than 
the side opposite of ∠A

Table 1	 �One Organizational Scheme for the Side-Side-Angle Uniqueness Task

Task 4	 �Measures of Central Tendency

Create the following three data sets, each of 
which is composed of exactly five integers that 
are between 1 and 10.

1. �Data Set A: A set with a mean of 5 and a 
median of 4

2. �Data Set B: A set with the largest possible 
mean absolute deviation (MAD)

3. �Data Set C: A set with the largest possible 
difference between the mean and the median

https://pubs.nctm.org/view/journals/mtlt/113/2/article-p140.xml?tab_body=Geogebra
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number of data points pushes students to be more 
strategic in their selections and encourages them to 
think carefully about the meaning of each measure 
and how to change it. 

Unpacking mathematical definitions requires math-
ematical skills, such as the ability to generate exam-
ples and nonexamples, the ability to read mathematical 
statements, and logical reasoning. Teachers can help 
students acquire the relevant skills by spending time 
unpacking new definitions with their students. One 
way to do this is to have students generate examples 
(and nonexamples) of the definition—note that explor-
ing nonexamples provides contrasting cases that fur-
ther develop conceptual understanding, distinguishing 
properties the objects do and do not have. Teachers 
can also ask students to restate definitions in their own 
terms or to draw pictorial representations of the defini-
tion when appropriate. Additionally, teachers can help 
students experience definitions by directing students 
to them frequently. For example, when a student asks if 
she computed the mean correctly, instead of sanction-
ing or correcting the student’s response, the teacher 
could direct the student to the definition by saying, 
“Let’s see. What does the definition say?” When stu-
dents ask questions that can be settled by definitions, 
directing them to the definitions is compelling because 
it sends two important messages: (1) Mathematical con-
ventions and reasoning are the authority in determining 
correctness, not the teacher, and (2) they can under-
stand mathematics and can determine for themselves 
when they are correct. 

Finally, understanding the power and purpose of 
definitions need not be subtle. Teachers can explicitly 
talk about their purpose and how they empower us to 

make decisions and formulate arguments. See Szydlik, 
Parrott, and Belnap (2016) for more about discussing 
definitions with students. 

CONCLUSION
Technology is interesting and exciting. It can improve 
our lives in many ways, but it can also be an ineffec-
tive distraction or an obstacle to learning. Along with 
technology, we must attend to the big question of how 
we can use technology to facilitate and enhance rather 
than detract from and impede student learning.

The key, of course, lies in students’ actions and 
thinking. When technology replaces mathematical 
thinking, it impedes student learning. Conversely, 
when technology gives students access to authentic 
mathematical activity and practices, it enhances edu-
cation because it provides both a window into our stu-
dents’ mathematical practices and opportunities to 
foster and shape our students’ views, tendencies, and 
abilities. By focusing on the development of mathemat-
ical practices, we can use technology to empower our 
students to reason mathematically.

Mathematical practices can be fostered through  
strategic technology use, but they do not spontaneously 
develop from mere technological presence; they must be 
nurtured. As teachers, helping students establish these 
practices should be an explicit focus of our instruction. 
This may require student engagement in strategic tasks, 
making them the focus of discussion, teacher modeling, 
and intervention. As teachers present opportunities  
for students to meaningfully engage with technology,  
students gain a chance to develop their mathematical 
practices and we can see and influence those practices. _
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