

KENTUCKY CENTER FOR MATHEMATICS

Let's Do Math with KCM High School Geometry

Rich Mathematics Tasks

Welcome!

Your host

Leah Dix White

Regional Consultant Kentucky Center for Mathematics leah.dix@louisville.edu

Kentucky Center for Mathematics

- KCM seeks to advance the knowledge and practice of effective mathematics teaching and learning, encompassing early childhood through adult education.
- KCM provides and develops statewide leadership, facilitate professional learning experiences, and cultivate innovation with the aim of improving mathematics education, practice and policy.

Visit Our Website

www.kentuckymathematics.org

f 🕲 in 🦻 😢 Search

HOME MAF LEARNING - RESOURCES - CONFERENCE - ABOUT US-

Today's Session

- Research
- Standard
- Let's Do the Math: Similar Triangles & Circles Visual Proof in Geogebra
- Virtual Manipulatives
- Upcoming Sessions

Research

Effective Mathematics Teaching Practices

- 1. Establish mathematics goals to focus learning.
- 2. Implement tasks that promote reasoning and problem solving.
- 3. Use and connect mathematical representations.
- 4. Facilitate meaningful mathematical discourse.
- 5. Pose purposeful questions.
- 6. Build procedural fluency from conceptual understanding.
- Support productive struggle in learning mathematics.
- 8. Elicit and use evidence of student thinking.

National Council of Teachers of Mathematics. (2014). Principles to actions: Ensuring mathematical success for all. Reston, VA: Author.

Basing the concept of similarity on dilations instead of taking the axiomatic approach allows students to construct *visual knowledge* and *operations* to discover and fully comprehend properties of dilations"

Battista, M. T., & Clements, D. H. (1995). Geometry and proof. *Mathematics Teacher*, *88*(1), 48-54.

Standards

KY.HS.G.15 Verify using dilations that all circles are similar. MP.5, MP.8

KY.HS.G.9 Understand properties of dilations.

- a. Verify the properties that result from that dilations given by a center and a scale factor.
- b. Verify that a dilation produces an image that is similar to the pre-image. MP.5, MP.7

Visual Proofs

Let's Do the Math...

Verify in Geogebra pairs of similar triangles and circles.

When would students need to look for and or notice repeated reasoning?

Task: Dynamic Similar Circles Proof

Similar Circles Applet

GeoGebra

For any pair of circles you can translate one circle, apply the scale factor, then dilate to superimpose that circle onto the other.

What repeated reasoning in similarity did you notice from these visual proofs?

- Triangles have proportional corresponding side lengths.
- Circles have proportional corresponding radii, circumferences, and diameters.
- Solids have proportional corresponding heights and radii.

A dilation is a single or sequence of similar transformations that map one figure onto the other.

Extensions

Are all cylinders with the same of height similar? Why or why not?

Need more mathematics?

Middle and High School Resources

≡ GeoGebra Geometry

JavaLab Mathematics Simulations

Virtual Manipulatives

<u>Geogebra</u>

Phet Interactive Simulations

Desmos

Didax Math Virtual Manipulatives

KCM Support for Educators

Your host

Leah Dix White

Regional Consultant Kentucky Center for Mathematics leah.dix@louisville.edu

stay

Upcoming Professional Learning

