

KENTUCKY CENTER FOR MATHEMATICS

Developing Multiplicative Thinking-

Structuring Number Multiplicatively with Lisa Riggs

Welcome!

Your host

Lisa Riggs

Regional Consultant Kentucky Center for Mathematics Iriggs2@murraystate.edu

KCM Website

www.kentuckymathematics.org

PROFESSIONAL ANNUAL HOME MAF LEARNING RESOURCES CONFERENCE ABOUT US

Search

Good News!

The KCM is hard at work to ensure Kentucky teachers have access to innovative professional development from home.

Through the newly launched <u>KCM Virtual site</u>, mathematics teachers from all grade levels will have access to live zoom meetings, video records and corresponding materials. <u>Read more</u>.

Elementary: Make 'n Take Supporting Number Sense and Fluency - Mar. 23-27

Middle: Fractions, Decimals & Percents - Mar. 30-Apr.

<u>High: Algebra & Geometry - Thursdays, Mar. 26 - Apr.</u> 16

Today's Agenda

- Target standards
- What is multiplicative thinking?
- What is structuring?
- Some instructional settings

Standards

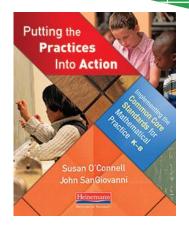
Operations and Algebraic Thinking					
Standards for Mathematical Practice					
MP.1. Make sense of problems and persevere in solving them.	MP.5. Use appropriate tools strategically.				
MP.2. Reason abstractly and quantitatively.	MP.6. Attend to precision.				
MP.3. Construct viable arguments and critique the reasoning of others.	MP.7. Look for and make use of structure.				
<u>MP.4.</u> Model with mathematics.	MP.8. Look for and express regularity in repeated reasoning.				
Cluster: Represent and solve problems involving multiplication and division.					
Standards	Clarifications				
KY.3.OA.1 Interpret and demonstrate products of whole numbers.	Students use models for multiplication situations. For example, students				
MP.2, MP.5	interpret 5 x 7 as the total number of objects in 5 groups of 7 objects each.				
	Coherence <u>KY.2.OA.4</u> →KY.3.OA.1→ <u>KY.4.OA.1</u>				
KY.3.OA.2 Interpret and demonstrate whole-number quotients of	Students use models for division situations. For example, students interpret				
whole numbers, where objects are partitioned into equal shares.	56 ÷ 8 as the number of 56 objects are partitioned equally into 8 shares, or				
MP.2, MP.5	as a number of shares when 56 objects are partitioned into equal shares of				
	8 object each.				
	Coherence <u>KY.3.OA.1</u> \rightarrow KY.3.OA.2 \rightarrow KY.5.NF.3				
KY.3.OA.3 Use multiplication and division within 100 to solve word	Students flexibly model or represent multiplication and division situations or				
problems in situations involving equal groups, arrays and	context problems (involving products and quotients up to 100).				
measurement quantities, by using drawings and equations with a	Note: Drawings need not show detail, but accurately represent the				
symbol for the unknown number to represent the problem.	quantities involved in the task. See Table 2 in Appendix A.				
MP.1, MP.4	Coherence KY.3.OA.3→KY.4.OA.2				
KY.3.OA.4 Determine the unknown whole number in a multiplication	Students determine the unknown number that makes the equation true in				
or division equation relating three whole numbers.	each of the equations $8 \times ? = 48$, $5 = \Box \div 3$, $6 \times 6 = ?$.				
MP.6, MP.7	Coherence KY.3.OA.4→ <u>KY.4.MD.3</u>				
Attending to the Standards for Mathematical Practice					

Students recognize the numbers and symbols in an equation such as 5 x 8 = 40 are related to a context using groups or arrays (MP.2). For example, a student analyzes this equation and tells a story about walking 8 blocks round-trip to and from school each day, connecting to the equation by saying: 5 days x 8 blocks each day is 40 total blocks walked. To represent the problem, they show 5 jumps of 8 on an open number line or show five 8-unit long Cuisenaire Rods (MP.5). When reading story situations, students seek to make sense of the story and its quantities (MP.1). They do not just lift numbers out or use keywords. To help make sense of the problem, students decide to write an equation or use a number line. In other words they 'mathematize' the situation (MP.4). In missing value problems, students attend to what value is unknown and what operation is represented (MP. 6) and use this information to determine what value will result in both sides of the equations being equal (MP.7).

Moving toward Fluency with Multiplicative Thinking

As students come to know basic facts in any operation, they progress through three phases (Baroody, 2006):

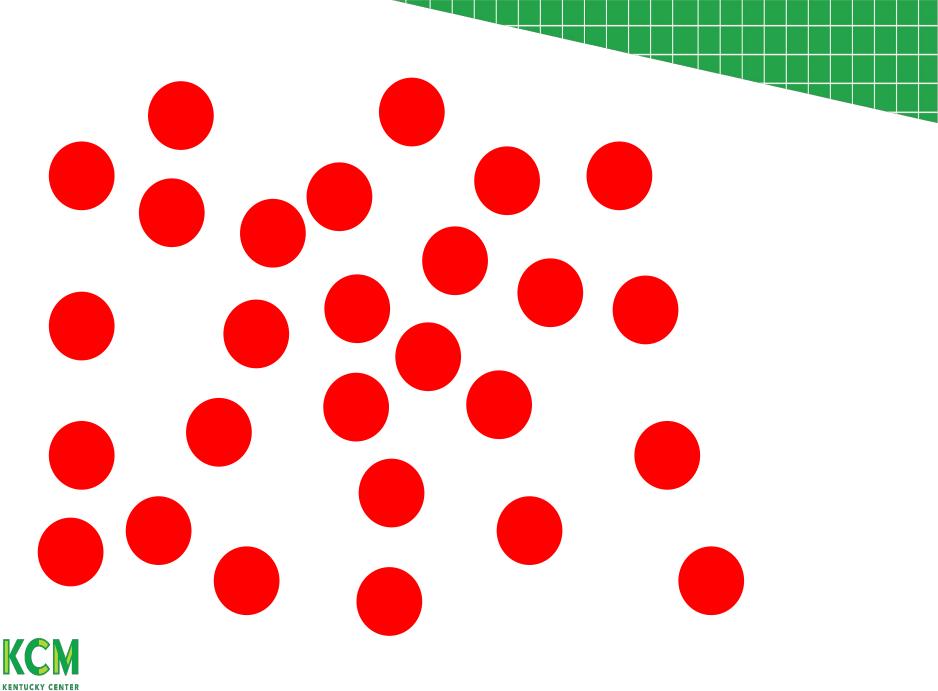
- Phase 1: Counting
- Phase 2: Deriving
- Phase 3: Mastery

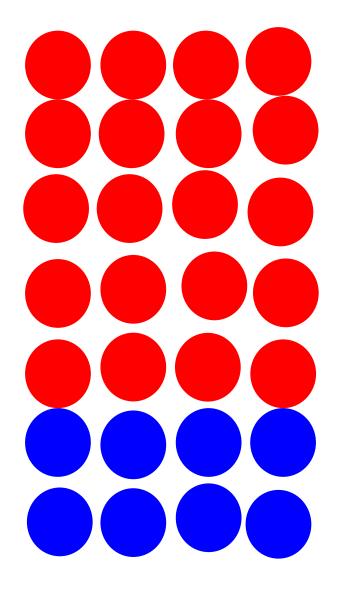


Student Mathematical Practice 7

Look for and Make Use of Structure

Mathematically proficient students:


• see the flexibility of numbers

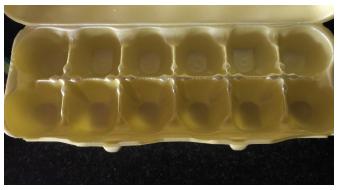

- understand properties and relationships
- recognize patterns and functions

Many people see math as confusing and they are not always sure how answered are achieved however math is quite predictable. There is structure in math and people who see that structure find that math makes sense.

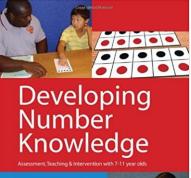
FOR MATHEMATICS

Things that come in groups of 2 ...

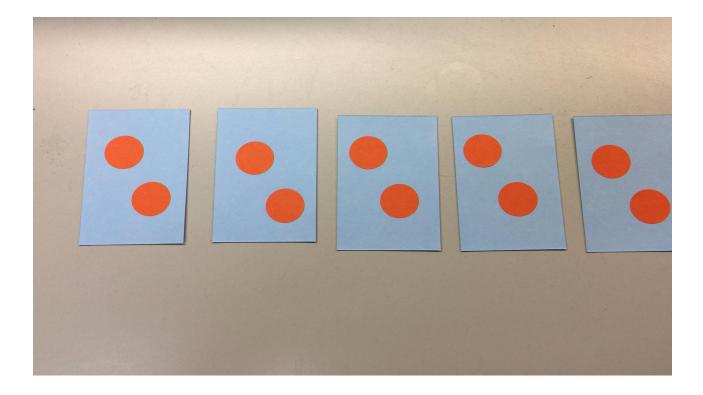
Things that come in groups of 3 ...



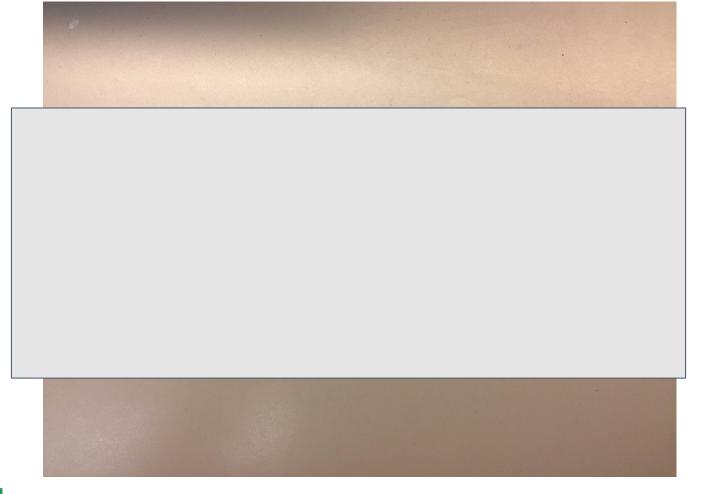
Items at home that can add structure to multiplicative thinking



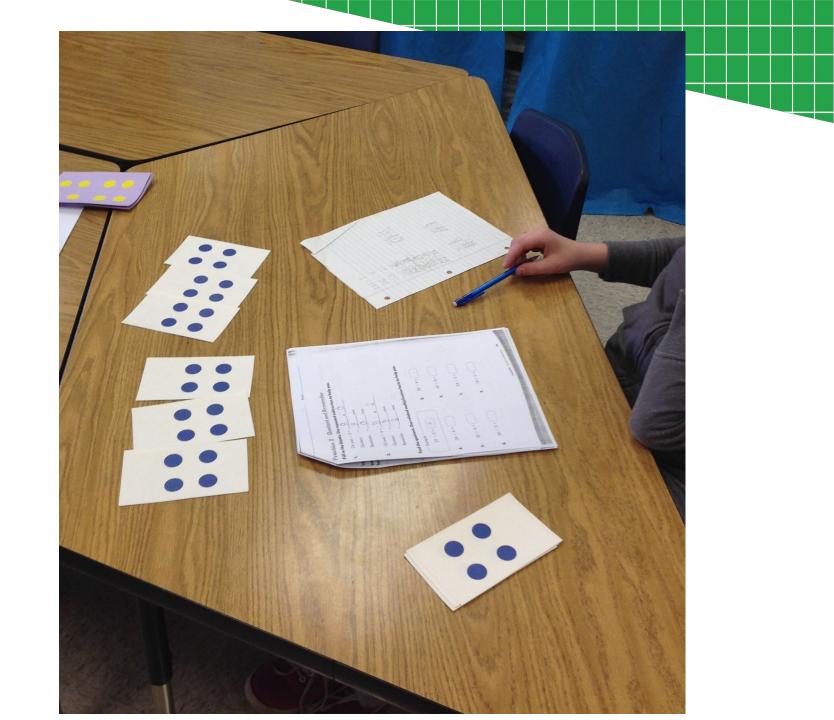
Snack time



Robert J. Wright David Ellemor-Collins Pamela D. Tabor



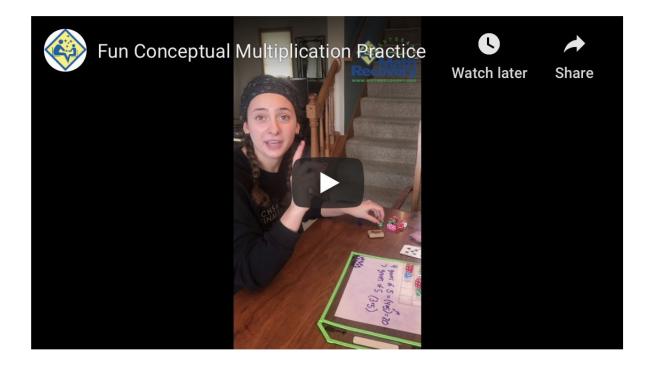
Dot cards



Dot cards

What do you notice ... what do you wonder ...

What do you notice ... what do you wonder ...

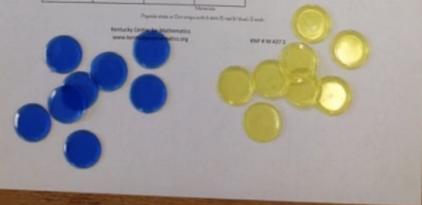


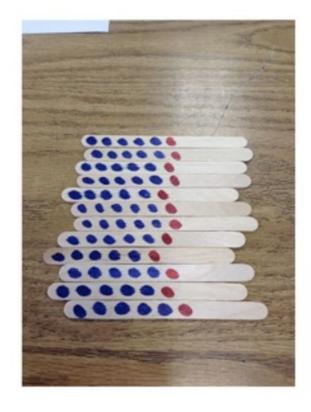
What do you notice ... what do you wonder ...

Conceptual Multiplication Fact practice

7×7=49 7 14 21 28 35 -.. 43 49

Pop Drop Move It 4437.


Level	Activity	Task	Numbers	Level of support
1 Red	Skip counting with sticks	Skip count	2s & 5s	Visible dots
2 Blue	Move-It game with sticks	Repeated addition/ Multiplication	2s & 5s	Visible dots
3 Green	Move-It game with sticks	Repeated addition/ Multiplication	2s & 5s	Hidden dots
4 Purple	Move-it game with spinners	Multiplication	2s & 5s	Bare Number (sticks available)
5 Pink	Move-it game with sticks	Multiplication (Use known facts)	6s or 7s	Visible or Hidden dots
6 Orange	Missing Factor Move-it	Missing Factor/ Division	6s or 7s	Expression cards (sticks available)



Each physics will share work if the standard is appreciate only. On your twost, sharp the physics work, if also the end of their Datameters the standards of also they are free about their are each two many are the end-two many standards. Create the total curstee of the standard that are each two standards and physics will be called physics to "most if" and uses the notates with pairs are used with their physics. We do not standard the physics of all has the notates with pairs are used with the physics. The standard the physics of all has the notates with the pairs. The free physics the standard of the notation terms are the space.

POP DROP MOVE -IT

3	6	42	54	36	1
12	2	42	30	56	
24	+	48	60	48	
18		30	24	48	
42	2	54	48	60	

Upcoming Sessions

APRIL 27 - MAY 1 2:00-2:30 PM EST

Developing Multiplicative Thinking!

> Monday, April 27 - Foundations of Multiplicative Thinking

Tuesday, April 28 - Sequence of Multiples

Wednesday, April 29 - Structuring Numbers Multiplicatively

Thursday, April 30 - Developing Multiplication Strategies

Friday, May 1 - Monitoring and Assessing Multiplication

Follow Us!

www.kentuckymathematics.org

PROFESSIONAL ANNUAL HOME MAF LEARNING RESOURCES CONFERENCE ABOUT US

Search

Good News!

The KCM is hard at work to ensure Kentucky teachers have access to innovative professional development from home.

Through the newly launched <u>KCM Virtual</u> site, mathematics teachers from all grade levels will have access to live zoom meetings, video records and corresponding materials. <u>Read more</u>.

Elementary: Make 'n Take Supporting Number Sense and Fluency - Mar. 23-27

Middle: Fractions, Decimals & Percents - Mar. 30-Apr.

<u>High: Algebra & Geometry - Thursdays, Mar. 26 - Apr.</u> 16

KCM is here to support you!

Your host

Lisa Riggs

Regional Consultant Kentucky Center for Mathematics Iriggs2@murraystate.edu

